Entrar/Registro  
INICIO ENGLISH
 
Revista Mexicana de Neurociencia
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista Mexicana de Neurociencia >Año 2006, No. 3


Robles L, Penalva de OAC, Vidal JE, Vasconcellos FA, Cedeno-Laurent F, Trujillo JR
Terapia antirretroviral en neurosida: prospectos de la vía olfatoria
Rev Mex Neuroci 2006; 7 (3)

Idioma: Español
Referencias bibliográficas: 46
Paginas: 231-239
Archivo PDF: 185.30 Kb.

[Texto completo - PDF]

RESUMEN

Las complicaciones neurológicas asociadas al virus de inmunodeficiencia humana tipo 1 (VIH-1) comprenden un espectro amplio, siendo el complejo demencial asociado a SIDA (CDS) una de las patologías más frecuentes. Las células de la microglia y astrocitos tienen un papel importante en la neuropatogénesis funcionando como reservorio viral y perpetuando la enfermedad. La limitada penetración de los medicamentos antirretrovirales al sistema nervioso central (SNC) impide la completa erradicación de los desórdenes neurológicos asociados al VIH/SIDA, por lo que nuevas vías de administración de estos medicamentos representan un área de investigación prometedora. En esta revisión describimos adelantos en materia del CDS, así como el papel de los antirretrovirales en neurosida; estudios clínicos de los Institutos Nacionales de Salud (NIH) y perspectivas a futuro en el área de terapéutica.


Palabras clave: SNC, CDS, antirretrovirales, VIH, SIDA, vía olfatoria.


REFERENCIAS

  1. Gottlieb MS, Schroff R, Schanker HM, et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 1981; 305(24): 1425-31.

  2. Gallo RC, Sarin PS, Gelmann EP, et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 1983; 220(4599): 865-7.

  3. Navia BA, Jordan BD, Price RW. The AIDS dementia complex: I. Clinical features. Ann Neurol 1986; 19(6): 517-24.

  4. Navia BA, Cho ES, Petito CK, Price RW. The AIDS dementia complex: II. Neuropathology. Ann Neurol 1986; 19(6): 525-35.

  5. Ho DD, Bredesen DE, Vinters HV, Daar ES. The acquired immunodeficiency syndrome (AIDS) dementia complex. Ann Intern Med 1989; 111(5): 400-10.

  6. Trujillo JR, Jaramillo-Rangel G, Ortega-Martinez M, et al. International NeuroAIDS: prospects of HIV-1 associated neurological complications. Cell Res 2005; 15(11-12): 962-9.

  7. Trujillo JR, Garcia-Ramos G, Novak IS, Rivera VM, Huerta E, Essex M. Neurologic manifestations of AIDS: a comparative study of two populations from Mexico and the United States. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8(1): 23-9.

  8. Simpson DM. Human immunodeficiency virus-associated dementia: review of pathogenesis, prophylaxis, and treatment studies of zidovudine therapy. Clin Infect Dis 1999; 29(1): 19-34.

  9. Janssen RS, Nwanyanwu OC, Selik RM, Stehr-Green JK. Epidemiology of human immunodeficiency virus encephalopathy in the United States. Neurology 1992; 42(8):1472-6.

  10. McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol 2005; 4(9): 543-55.

  11. Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001; 410(6831): 988-94.

  12. An SF, Groves M, Giometto B, Beckett AA, Scaravilli F. Detection and localization of HIV-1 DNA and RNA in fixed adult AIDS brain by polymerase chain reaction/in situ hybridization technique. Acta Neuropathol (Berl.) 1999; 98(5): 481-7.

  13. Bagasra O, Lavi E, Bobroski L, et al. Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. Aids 1996; 10(6): 573-85.

  14. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 1996; 39(6): 705-11.

  15. Thompson KA, McArthur JC, Wesselingh SL. Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann Neurol 2001; 49(6): 745-52.

  16. Glass JD, Fedor H, Wesselingh SL, McArthur JC. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 1995; 38(5): 755-62.

  17. Nuovo GJ, Gallery F, MacConnell P, Braun A. In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-alpha RNA in the central nervous system. Am J Pathol 1994; 144(4): 659-66.

  18. Wang TH, Donaldson YK, Brettle RP, Bell JE, Simmonds P. Identification of shared populations of human immunodeficiency virus type 1 infecting microglia and tissue macrophages outside the central nervous system. J Virol 2001; 75(23): 11686-99.

  19. Wiley CA. Polymerase chain reaction in situ hybridization-opening Pandora’s box? Ann Neurol 1996; 39(6): 691-2.

  20. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 1986; 83(18): 7089-93.

  21. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272(5263): 872-7.

  22. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272(5270): 1955-8.

  23. Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85(7): 1135-48.

  24. Trujillo JR, Navia BA, Worth J, et al. High levels of anti-HIV-1 envelope antibodies in cerebrospinal fluid as compared to serum from patients with AIDS dementia complex. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 12(1): 19-25.

  25. Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1995; 1(12): 1284-90.

  26. Chun TW, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997; 387(6629): 183-8.

  27. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997; 278(5341): 1295-300.

  28. Brack-Werner R. Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. Aids 1999; 13(1): 1-22.

  29. Sabri F, Titanji K, De Milito A, Chiodi F. Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection. Brain Pathol 2003; 13(1): 84-94.

  30. Bartlett JG. LHC. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Developed by the panel on clinical practices for treatment of HIV infection convened by the Department of Health and Human Services (DHHS); 2005.

  31. Pardridge WM. Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol 2002; 59(1): 35-40.

  32. Eggers C, Hertogs K, Sturenburg HJ, van Lunzen J, Stellbrink HJ. Delayed central nervous system virus suppression during highly active antiretroviral therapy is associated with HIV encephalopathy, but not with viral drug resistance or poor central nervous system drug penetration. Aids 2003; 17(13): 1897-906.

  33. Brew BJ. Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. Aids 2004; 18(Suppl. 1): S75-8.

  34. An Introduction to Clinical Trials. U.S. National Library of Medicine, National Institutes of Health, Department of Health & Human Services; 2005.

  35. Carpenter MB. Neuroanatomy. Fourth Edition ed Baltimore, Maryland: Williams & Wilkins; 1991.

  36. Shipley MT. Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull 1985; 15(2): 129-42.

  37. Al-Ghananeem AM, Traboulsi AA, Dittert LW, Hussain AA. Targeted brain delivery of 17 beta-estradiol via nasally administered water soluble prodrugs. AAPS PharmSciTech 2002; 3(1): E5.

  38. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH, 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004; 127(2): 481-96.

  39. Yang Z, Huang Y, Gan G, Sawchuk RJ. Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats. J Pharm Sci 2005; 94(7): 1577-88.

  40. Rapoport AM, Bigal ME, Tepper SJ, Sheftell FD. Intranasal medications for the treatment of migraine and cluster headache. CNS Drugs 2004; 18(10): 671-85.

  41. Joukhadar C, Schenk B, Kaehler ST, et al. A replicate study design for testing bioequivalence: a case study on two desmopressin nasal spray preparations. Eur J Clin Pharmacol 2003; 59(8-9): 631-6.

  42. Dooley M, Spencer CM, Ormrod D. Spotlight on estradiol-intranasal in the management of menopause. Treat Endocrinol 2002; 1(3): 191-4.

  43. McCarthy MW, Kockler DR. Trivalent intranasal influenza vaccine, live. Ann Pharmacother 2004; 38(12): 2086-93.

  44. Mandell Gerald L. BJE, Dolin Raphael. Principles and Practice of Infectious Diseases. 6th edition ed Churchill Livingstone; 2004.

  45. Dolin Raphael MH, Saag Michael S. Aids therapy. Churchill Livingstone; 1999.

  46. Enting RH, Hoetelmans RM, Lange JM, Burger DM, Beijnen JH, Portegies P. Antiretroviral drugs and the central nervous system. Aids 1998; 12(15): 1941-55.



>Revistas >Revista Mexicana de Neurociencia >Año2006, No. 3
 
 Buscar   Avanzada 


· Indice de Publicaciones 
· ligas de Interes 
       
Derechos Resevados 2007