Entrar/Registro  
INICIO ENGLISH
 
Cirugía y Cirujanos
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Cirugía y Cirujanos >Año 2006, No. 3


Zárate-Kalfópulos B, Reyes-Sánchez A
Injertos óseos en cirugía ortopédica
Cir Cir 2006; 74 (3)

Idioma: Español
Referencias bibliográficas: 44
Paginas: 217-222
Archivo PDF: 57.56 Kb.

[Texto completo - PDF]

RESUMEN

En cirugía ortopédica existe cada vez mayor demanda de injertos óseos debido al incremento en el número y la complejidad de las cirugías. El actual estándar de oro es el injerto óseo autólogo, sin embargo, sus tasas de no unión, morbilidad en el sitio de toma del injerto y la limitada cantidad con la que se cuenta, han fomentado el surgimiento de diferentes alternativas al mismo, que funcionan como sustitutos óseos. Para obtener éxito en su utilización, se deben conocer las distintas propiedades de cada una de estas alternativas y del ambiente en el que van a ser colocadas. A medida que los sustitutos óseos y los factores de crecimiento se conviertan en realidades clínicas, un nuevo estándar de oro será definido. Las técnicas de ingeniería de tejidos y terapia génica tienen como objetivo crear un sustituto óseo óptimo, con una combinación de sustancias que tengan propiedades osteoconductivas, osteoinductivas y osteogénicas.


Palabras clave: injerto óseo autólogo, aloinjerto óseo, matriz ósea desmineralizada, médula ósea, ingeniería de tejidos ósea.


REFERENCIAS

  1. Inoue K. Ohgushi H, Yoshikawa T, et al. The effects of aging on bone formation in porous hydroxyapatite: biochemical and histologic analysis. J Bone Miner Res 1997;12:989-994.

  2. Muschler GF, Nitto H, Boehrm C, Easley KA. Age and gender related changes to cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001;19:117-125.

  3. Muschler GF, Boehm C, Easley KA. Aspiration to obtain osteoblast progenitor cells from bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 1997;79:1699-1709.

  4. Conolly J, Guse R, Lippiello L, Dehne R. Development of an osteogenic bone marrow preparation. J Bone Joint Surg Am 1989;71:684-91.

  5. Paley D. Young MC, Wiley AM, Fornasieer VL, Jackson RW. Percutaneous bone marrow grafting of fractures and bone defects: an experimental study in rabbits. Clin Orthop 1986;208:300-311.

  6. Boden S. Bone graft and fusion-enhancing substances: practical applications of gene therapy. In: Vaccaro, ed. Principles and Practice of Spine Surgery. 1st ed. Philadelphia: Mosby; 2003. pp. 127-139.

  7. Mizumoto Y, Moseley T, Drews M, et al. Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am 2003; 85A:124-130.

  8. den Boer FC, Bramer JA, Blokhuis TJ, et al. Effect of recombinant human osteogenic protein-1 on the healing of a freshly closed diaphyseal fracture. Bone 2002;31:158-164.

  9. Cook SD, Baffes GC, Wolfe MW, et al. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop 1994;301:302-312.

  10. De Biase P, Capanna R. Clinical applications of BMPs. Injury 2005; 36:43S-46S.

  11. Widemann B, Bamdad P, Holmer C, et al. Local delivery of growth factors from coated titanium plates increases osteotomy healing in rats. Bone 2004;34:862-868.

  12. Vacarro AR, Patel TC, Fischgrund J, Anderson DG, Truumees E, Herkowitz HN, et al. A pilot study evaluating the safety and efficacy of OP-1 putty (shBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 2004;29:1885-1892.

  13. Boden SD, Adeblick TA, Sandhu HS. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 2000;25:376-381.

  14. Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science 1998;242:1528-1534.

  15. Sonobe J, Okubo Y, Kaihara S, Miyatake S, Bessho K. Osteoinduction by bone morphogenetic protein 2-expressing adenoviral vector: application of biomaterial to mask the host immune response. Hum Gene Ther 2004;15:659-668.

  16. Sassard WR, Eidman DK, Gray PM. Analysis of spine fusion utilizing demineralized bone matrix. Orthop Trans 1994;18:886-887.

  17. Nade S. Armstrong L, McCartney E, Baggaley B. Osteogenesis after bone marrow transplantation: the ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies. Clin Orthop 1983;181:255-263.

  18. Sandhu HS et al. Bone grafting for spinal fusion. Orthop Clin North Am 1999;30:685-698.

  19. Ludwig SC, Boden SD. Osteoinductive bone graft substitutes for spinal fusion. Orthop Clin North Am 1999;30:635-645.

  20. Chapman MW, Bucholz R, Cornell C. Treatment of acute fractures with collagen-calcium phosphate graft material. A randomized clinical trial. J Bone Joint Surg Am 1997;79:495-502.

  21. Urist MR. Bone formation by autoinduction. Science 1965;150:893-899.

  22. Cho DY, Lee WY, Sheu PC, Chen CC. Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol 2005;63:497-504.

  23. Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as bone graft substitute in tibial plateau fractures. Clin Orthop 1989; 240:53-62.

  24. Boden S. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 2002;27:26-31.

  25. Cornell CN. Osteoconductive materials as substitutes for autogenous bone grafts. Orthop Clin North Am 1999;30:591-598.

  26. Safdar N, Khan F, Cammisa H Jr, Sandhu S, Ashish D, et al. The biology of bone grafting. J Am Acad Orthop Surg 2005;13:77-86

  27. Garza CP, Mendoza OF, Galván RM, Álvarez EL. Banco de hueso y tejidos: alta tecnología disponible para los ortopedistas mexicanos. Acta Ortoped Mex 2004;18:261-265.

  28. Boden SD. The biology of posterolateral lumbar spinal fusion. Orthop Clin North Am 1998;29:603-619.

  29. Greenwald S, Boden S, Goldberg V, Khan Y, Laurencin C. Bone graft substitutes: facts, fictions and applications. J Bone Joint Surg 2001; 83:S98-103.

  30. Whang PG, Wang JC. Bone graft substitutes for spinal fusion. Spine J 2003;3:155-165.

  31. Stevenson S. Biology of bone grafts. Orthop Clin North Am 1999; 30:543-552.

  32. Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications J Am Acad Orthoped Surg1995;3:1-8.

  33. Khan S, Hidaka C, Sandhu HS, Girardi F, Cammisa F, Diwan AD. Gene therapy for spine fusion. Orthop Clin North Am 2000; 31:473-484.

  34. Vacarro AR, Patel TC, Fischgrund J, Anderson DG, Truumees E, Herkowitz HN. A pilot study evaluating the safety and efficacy of OP-1 putty (shBMxP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 2004;29:1885-1892.

  35. Arpornmaeklong P, Kochel M, Depprich R, et al. Influence of platelet-rich plasma PRP on osteogenic differentiation of rat bone marrow stromal cells: an in vitro study. Int J Maxillofac Surg 2004;33:60-70.

  36. Dietmar W, Hutmacher R, García A. Scaffold-based bone engineering by using genetically modified cells. Gene 2005;347:1-10.

  37. Doblaré M, García JM, Gómez MJ. Modelling bone tissue fracture and healing. Eng Fract Mec 2004;71:1809-1840.

  38. Mayer U, Joos U, Wiesmann P. Biological and biophysical principles in extracorporal bone tissue engineering. I. Int J Maxillofac Surg 2004;33:325-332.

  39. Sun JS, Yueh-Hsiu S, Lin FH. The role of muscle-derived stem cells in bone tissue engineering. Biomaterials 2005;26:3953-3960.

  40. Orban J, Marra K, Hollinger J. Composition options for tissueengineered bone. Tissue Eng 2002;8:529-539.



>Revistas >Cirugía y Cirujanos >Año2006, No. 3
 
 Buscar   Avanzada 


· Indice de Publicaciones 
· ligas de Interes 
       
Derechos Resevados 2007