Olanzapine and fluoxetine combined as therapy for treatment-resistant depression: a systematic review

Jorge M. Tamayo1, 2, Yolanda Pica-Ruiz3, Ignacio Ruiz4

ABSTRACT

Objective: we conducted a systematic review to evaluate the evidence for the efficacy and safety of olanzapine-fluoxetine combined (OFC) in patients with treatment-resistant depression (TRD). Material and methods: MEDLINE, EMBASE, Cochrane Library, ClinicalTrials.gov, and LillyTrials.com were searched (28 February 2014) using terms related to TRD and OFC (no language restrictions). All prospective studies of OFC treatment of TRD were included. Results: we included 16 studies (5 meta-analyses, 3 pooled analyses, 7 randomized controlled trials [RCTs], 1 nonrandomized, open-label trial); unpublished data of open-label extensions were available for 4 RCTs. The definition of TRD varied; most studies defined TRD as response failure after 2 antidepressant trials of ≥4 weeks. All RCTs compared OFC with fluoxetine. Treatment duration was 4-12 weeks in RCTs, and 8-76 weeks in open-label studies. Depressive symptoms improved with OFC treatment in all studies; improvement was generally greater and occurred earlier than with fluoxetine and was sustained during longer-term treatment. Response (27.5%-80%) and remission (16.9%-73.3%) rates were generally greater than with fluoxetine. Weight gain and changes in metabolic parameters were generally more common in patients treated with OFC than with fluoxetine. Other adverse events and discontinuation rates were similar to those seen with fluoxetine. Conclusions: evidence from prospective studies supports the efficacy of OFC in the treatment of TRD, which is sustained with longer-term treatment. However, there may be a greater risk of weight gain and changes in metabolic parameters. Physicians may consider OFC as treatment for TRD, provided the risks of weight gain and metabolic changes are actively managed.

Key words: antipsychotic agents, depressive disorder, treatment-resistant, olanzapine-fluoxetine combination.
In addition, few prospective studies have been conducted within Latin America, as demonstrated by the inability of a previous systematic review to identify any such studies12.

Both non-pharmacological and pharmacological strategies have been used for the management of TRD. Non-pharmacological strategies include psychotherapy, electroconvulsive therapy, and neurostimulation6,13, whereas pharmacological strategies include switching to a different antidepressant, combining antidepressants that have different mechanisms of action, and augmenting antidepressants with other neuroactive agents, such as lithium, thyroid hormone, anticonvulsants, or second-generation antipsychotics (SGAs)8,14. In particular, the SGAs aripiprazole, quetiapine, risperidone, and olanzapine have been successfully used to augment selective serotonin reuptake inhibitors (SSRIs) in patients with TRD6,15. The combination of olanzapine and the SSRI fluoxetine (olanzapine-fluoxetine combined [OFC]; Symbyax®, Eli Lilly and Company) was approved for TRD in the United States in 2009 after previously being approved for the treatment of depressive episodes associated with bipolar I disorder15. Within Latin America, OFC is approved for TRD in Mexico and for depressive episodes associated with bipolar disorder in Mexico, Chile, and Argentina.

A number of reviews, systematic reviews, and meta-analyses have published on the efficacy and safety of OFC for TRD16-20. However, most previous reviews have not included information available in clinical trial databases, in particular, information from studies involving longer-term treatment with OFC. Collation of this information may provide important additional detail.
regarding both the immediate and long-term efficacy and safety of OFC treatment for TRD. In this systematic review, we sought to assess the available evidence on efficacy and safety of OFC treatment for TRD, with a particular emphasis on its longer-term profile.

METHODS

Literature search strategy

The following databases were searched on 28 February 2014: MEDLINE via PubMed (1946+), EMBASE via OVID (1974+), The Cochrane Library via www.thecochranelibrary.com (1996+), the ClinicalTrials.gov results database (2008+), and the LillyTrials.com database. Searches of ClinicalTrials.gov and LillyTrials.com were restricted to trials with results. Free-text terms and medical subject headings (MeSH) or EMTREE terms (where possible) were used to search for OFC (olanzapine-fluoxetine combination, fluoxetine plus olanzapine, olanzapine AND fluoxetine, Symbyax) and TRD (including “depressive disorder, treatment-resistant, treatment resistant depression, refractory, major depressive disorder). Searches were conducted with truncation symbols and Boolean operators (AND, OR) as needed. To maximize retrieval of published articles, there were no restrictions on publication type or language, although database search filters that restricted the search output to human studies were used where available.

Eligibility criteria

We included publications of studies that assessed male or female patients of any age with TRD (regardless of definition) who received OFC therapy at any dose. Full-text publications and ClinicalTrials.gov or LillyTrials.com trials with posted results were eligible for inclusion. Study types considered included meta-analyses, systematic reviews, randomized and nonrandomized clinical trials, and prospective observational studies. Narrative reviews, systematic reviews that did not report original data, case reports, case series, nonclinical letters, conference abstracts, editorials, and commentaries were excluded from the review. Excluded publications included studies that were not conducted in humans, studies of patients with conditions other than TRD (eg, bipolar disorder), studies of therapies other than OFC, studies in which data for OFC therapy were pooled with data for other therapies (eg, other augmentation strategies), studies in which data for patients with TRD were pooled with data for patients with other conditions (eg, MDD that was not treatment resistant), studies that did not report relevant outcomes, and retrospective studies.

Study selection and data extraction

One person (not an author) conducted the literature search and screened the titles and abstracts of all publications retrieved using the predefined eligibility criteria. The full text of publications identified for potential inclusion were rescreened using the same criteria, and reference lists of systematic reviews and other relevant publications were hand screened to identify additional publications for inclusion. All authors reviewed and approved the publications identified for inclusion in the systematic review.

One person (not an author) extracted all relevant data from the included publications. Data were collected using predefined selection criteria determined by all the persons involved in this review and included publication type and year, study design, patient characteristics, definition of TRD, doses, and efficacy and safety outcomes. For primary studies, aspects relating to study quality (eg, presence/absence and method of randomization, presence/absence of blinding, study population used for analysis) were also assessed. Efficacy outcome measures that were collected included the Montgomery-Asberg Depression Rating Scale (MADRS), the Hamilton Depression Rating Scale (HDRS), the Hamilton Rating Scale for Anxiety (HAM-A), the Clinical Global Impressions-Severity of Illness scale (CGI-S), the Brief Psychiatric Rating Scale, response rates, remission rates, relapse rates, and any other reported efficacy outcomes. Safety outcome measures that were collected included the Montgomery-Asberg Depression Rating Scale (MADRS), the Hamilton Depression Rating Scale (HDRS), the Hamilton Rating Scale for Anxiety (HAM-A), the Clinical Global Impressions-Severity of Illness scale (CGI-S), the Brief Psychiatric Rating Scale, response rates, remission rates, relapse rates, and any other reported safety outcomes.

RESULTS

Literature search results

A total of 428 potentially relevant publications were retrieved from the literature search of MEDLINE, EMBASE, and The Cochrane Library and were screened for inclusion (Figure 2). After exclusion of duplicate publications between databases, the primary reason for exclusion was the wrong publication type, followed by publications that did not describe patients receiving OFC therapy. No publications were excluded on the basis of non-English language, and four included publications
were published in Chinese21-24. Seven systematic reviews that did not present any new data were excluded (as “wrong publication type”)17, 25-30. No relevant trials with posted, but unpublished, data were identified on the ClinicalTrials.gov database. Four relevant studies were identified on the LillyTrials.com database31-34; all four studies included both published35-38 and unpublished data. Manual screening of systematic reviews identified 3 additional relevant studies21-23. Overall, 16 publications18, 20,24,35-44 met the eligibility criteria for inclusion.

Overview of study characteristics

Study design

Of the 16 included publications, 5 described meta-analyses of data from literature searches18,20,24,41,42, 3 described pooled analyses of in-house trial data40, 43, 44, 7 described randomized controlled trials (RCTs21-23,35-38, and 1 described a prospective, nonrandomized trial39 (table 1). One of the RCT publications described two separate studies, and both separate and pooled data were reported38. Additional data for four of the RCTs35-38, including data from open-label trial extensions, were reported in the LillyTrials.com database.

Of the meta-analyses18, 20,24,41,42 and pooled analyses40,43,44 that met the eligibility criteria, all included data from OFC studies that were identified in our search. Only 1 meta-analysis24 included data from all RCTs identified in our search. Of the other meta-analyses, 1 included data from 5 of the 7 RCTs21, 35-38 identified in our search, 2 included data from 4 of the 7 RCTs35,38, and 1 included data from 2 of the 7 RCTs36,38. Two of the pooled analyses43, 44 included data from 4 of the 7 RCTs35-38 identified in our search, and the other40 included data from 2 of the 7 RCTs36,37. The results described hereafter are focused on those from the RCTs and the prospective, nonrandomized trial, except where indicated. Main results from meta-analyses and pooled analyses are described in relation to the collective results from individual studies, particularly where meta-analyses address inconclusive individual results.

The included prospective studies were conducted in a broad range of countries, but predominantly in North America and China (table 1). No studies reported inclusion of Latin American participants; one multinational study31, 37 did not specify the countries of origin. The RCTs were variable in design, particularly regarding the inclusion/length of screening, washout, dose-escalation, and open-label phases before the start of randomized treatment (table 1). None of the RCTs described the method of randomization. Most, but not all, RCTs specified that the study was double-blinded, that placebos were used, and that analysis was conducted on the intention-to-treat population. Study sample sizes ranged from 52 to 605; a total of 895 participants with TRD received OFC in these studies. The doses of olanzapine and fluoxetine varied between studies, ranging from 1 to 20 mg/day and from 5 to 75 mg/day, respectively. In the RCTs, the duration of treatment in the randomized treatment phase ranged from 4 to 12 weeks, but was most commonly 8 weeks (6 of 8 studies21, 22, 35, 36, 38). All of these studies included participants treated with fluoxetine alone as a comparator group. Five studies also included participants treated with olanzapine alone as a comparator group35-38, and 1 study each included participants treated with nortriptyline36 or venlafaxine37 as an additional comparator group. Five of the RCTs35-38 included an open-label extension phase, which ranged in duration from 8 to 52 weeks. In the nonrandomized trial39, the duration of open-label treatment was 76 weeks.

TRD definition and baseline depression scores

All studies included participants diagnosed with MDD35-39 as per the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, or depression21-23 as per the Chinese Classification and Diagnosis of Mental Diseases, Third edition (table 1). However, the definition of TRD varied between studies. In 5 studies21, 22, 35, 36, 39, TRD was defined as a failure to respond to 2 different classes of antidepressants after 4 weeks of treatment (after 6 weeks in 2 studies21,23), whereas in 2 studies36, 37, TRD was defined as a failure to respond to an SSRI after 4 weeks of treatment. In 2 of these studies35, 36, the failure to respond was confirmed during an open-label screening phase. In 2 studies published together38, TRD was defined as failure to respond to an antidepressant (except fluoxetine) during the current depressive episode. The severity of depression at baseline was assessed using the MADRS in 5 studies36,39, the HDRS in 3 studies21,23, and both the MADRS and HDRS in 1 study35. In participants treated with OFC, baseline MADRS scores ranged from 28.5 to 32.8 and HDRS scores ranged from 24.5 to 31.4, indicating moderate levels of depression.

Efficacy outcomes

Depression scores

All studies reported a significant improvement in depression scores in participants treated with OFC (table 2). In most studies, but not all, the improvement at endpoint was significantly greater than in participants treated with fluoxetine alone. In the RCTs21-23,35-38, the
Table 1. Characteristics of included primary studies on the use of olanzapine-fluoxetine combined in patients with treatment-resistant depression.

<table>
<thead>
<tr>
<th>Publication Country</th>
<th>Study Design</th>
<th>Study Quality</th>
<th>TRD Definition</th>
<th>Other Inclusion Criteria</th>
<th>N</th>
<th>Dose (mg/day)</th>
<th>Mean (SD) Baseline Depression Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelton 2001<sup>10</sup></td>
<td>6-wk OL screening (FLU 20-60 mg/day); 8-wk DB RCT; 8-wk OLE (OFCC)</td>
<td>RCT (method NR); DB (placebos); ITT</td>
<td>Recurrent MDD (DSM-IV); history of failure to respond to 2 AD classes (1 not SSRI) after ≥4 wks; confirmed by no response to FLU during screening</td>
<td>HDRS ≥20</td>
<td>28</td>
<td>FLU: 20-60</td>
<td>ODZ: 5-20; FLU: 10; OLE: 8</td>
</tr>
<tr>
<td>Shelton 2005<sup>11</sup></td>
<td>7-wk OL OR NR dose-escalation phase (25-175 mg/day); 8-wk DB RCT</td>
<td>RCT (method NR); DB (placebos); ITT</td>
<td>MDD (DSM-IV) diagnosis; history of failure to respond to an SSRI after ≥4 wks; confirmed by failure to respond (<30% MADRS) to NODR dose-escalation</td>
<td>HDRS ≥20 at start & end of screening</td>
<td>500</td>
<td>OLE: 6-12 FLU: 25-50 OR NR: 25-175</td>
<td>OLE: 402</td>
</tr>
<tr>
<td>Corya 2006<sup>22</sup></td>
<td>2-7 day screening/ washout; 7-wk OL OR NR OR placebo washout; 8-wk DB RCT</td>
<td>RCT (method NR); DB (placebos); ITT</td>
<td>Single or recurrent MDD (DSM-IV) without psychotic features and history of treatment failure with SSRI for ≥26 wks</td>
<td>HDRS≥18 after treatment with ≥2 AD (different classes, 1 not an SSRI) after ≥24 wks</td>
<td>483</td>
<td>FLU: 146 OLE: 142 OR NR: 68</td>
<td>OLE: 402</td>
</tr>
<tr>
<td>LI 2006<sup>23</sup> China</td>
<td>8-wk DB RCT</td>
<td>RCT (method NR); DB (placebo use NR); analysis population NR</td>
<td>Failure to respond (>15% HDRS) to ≥2 AD (different classes) for >26 wks</td>
<td>Diagnosis of depression using CCMD-3 criteria; HDRS≥18</td>
<td>305</td>
<td>FLU: 26</td>
<td>OLE: 26 FLU: 20-40 OR NR</td>
</tr>
<tr>
<td>Wang 2006<sup>24</sup> China</td>
<td>1-wk washout; 4-wk treatment</td>
<td>RCT (method NR); BL ND population NR</td>
<td>History of treatment failure to AD (except FLU) after ≥26 wks within current episode of MDD</td>
<td>Diagnosis of depression using CCMD-3 criteria; HDRS≥18</td>
<td>605</td>
<td>FLU: 200 OLE: 199</td>
<td>OLE: 460</td>
</tr>
<tr>
<td>Thase 2007<sup>25</sup></td>
<td>2 identical parallel studies 3-14 day screening; 8-wk OL lead-in (FLU 25-50 mg/day); 8-wk DB RCT</td>
<td>RCT (method NR); DB (placebo use NR); investigators blind to scores; ITT</td>
<td>History of treatment failure to AD (except FLU) after ≥26 wks within current episode of MDD</td>
<td>MDD (DSM-IV) diagnosis; history of treatment failure to AD (except FLU) after ≥26 wks within current episode of MDD</td>
<td>600</td>
<td>FLU: 20 FLU: 50</td>
<td>OLE: 6, 12, or 18 FLU: 50</td>
</tr>
<tr>
<td>Feng 2008<sup>26</sup> China</td>
<td>OL 8-wk RCT</td>
<td>RCT (method NR); OL; analysis population NR</td>
<td>History of treatment failure to ≥2 different classes of AD after ≥26 wks each</td>
<td>Diagnosis of depression using CCMD-3 criteria</td>
<td>60</td>
<td>FLU: 30</td>
<td>OLE: 6, 12, or 18 FLU: 25, 50, or 75</td>
</tr>
<tr>
<td>Prospective, nonrandomized, open-label study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corya 2003<sup>27</sup> 7 countries</td>
<td>2-7 day screening/ washout; 76-wk OL</td>
<td>Not randomized; OL</td>
<td>History of treatment failure to 2 AD classes after ≥24 wks</td>
<td>MDD (DSM-IV) diagnosis; CGI-S score ≥23</td>
<td>560</td>
<td>FLU: 552</td>
<td>OLE: 552 FLU: 30 FLU: 5</td>
</tr>
</tbody>
</table>

Abbreviations: AD = antidepressant, CCMD-3 = Chinese Classification and Diagnosis of Mental Diseases, Third edition, CGI-S = Clinical Global Impressions-Severity of Illness Scale; DB = double-blind, DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, Fourth edition, FLU = fluoxetine, HDRS = Hamilton Depression Rating Scale, ITT = intention-to-treat population, MADRS = Montgomery-Asberg Depression Rating Scale, MDD = major depressive disorder, NR = not reported, OFC = olanzapine-fluoxetine combination, OL = open-label, OLE = open-label extension, OLFZ = olanzapine, RCT = randomized controlled trial, SCID-I = Structured Clinical Interview for DMS-IV Axis I Disorders-Clinician Version, SD = standard deviation, SSRI = selective serotonin reuptake inhibitor, TRD = treatment-resistant depression, unpub. = unpublished data from study (obtained via Lilly Trials), US = United States, VEN = venlafaxine, wk = week.
improvement in depression scores at the end of the randomized treatment phase was significantly greater or similar for participants treated with OFC compared with participants treated with fluoxetine. In 2 of 5 studies\(^{35,38}\) in which MADRS scores were assessed, participants treated with OFC had significantly greater improvement at endpoint compared with participants treated with fluoxetine alone. In the other 3 studies\(^{36-38}\), there was no significant difference in MADRS score improvement at endpoint between participants treated with OFC and those treated with fluoxetine alone. In 3 of 4 studies\(^{21-23}\) in which HDRS scores were assessed, participants treated with OFC had significantly greater improvement compared with participants treated with fluoxetine alone. In the other study\(^{35}\), there was no significant difference in HDRS score improvement at endpoint between participants treated with OFC and those treated with fluoxetine alone. In 6 studies\(^{21-23,35-37}\), improvement in depression scores occurred significantly earlier (after 1 to 6 weeks of treatment) in participants treated with OFC compared with participants treated with fluoxetine alone. In all but one RCT (Study 1 in Thase et al\(^{38}\)) that included a comparator group treated with olanzapine only\(^{35-38}\), OFC was associated with a greater reduction in depression scores than olanzapine alone at some or all timepoints.

In all RCTs with open-label extensions\(^{32-35}\), depression scores improved from the start of the randomized treatment phase to the end of the extension phase. In 3 studies\(^{32-34}\), MADRS scores significantly improved from the start to the end of the open-label extension phase (8 to 52 weeks). In the other study\(^{35}\), significant improvements in MADRS and HDRS scores observed at the end of the randomized treatment phase were maintained during the 8-week, open-label extension phase. In the nonrandomized trial\(^{39}\), MADRS scores were significantly improved from baseline at the 72-week endpoint.

Consistent with the individual studies, meta-analyses and pooled analyses of RCTs reported greater improvements in depression scores in participants treated with OFC compared with those treated with fluoxetine\(^{20,24,41,43,44}\).

Response rate

Although response rate definitions varied among the studies, overall, a considerable proportion (16.9% to 73.3%) of participants responded to OFC treatment (Table 2). In the 7 RCTs reporting data\(^{21,23,35-38}\), the response rate at the end of the randomized treatment phase was higher or similar for participants treated with OFC compared with participants treated with fluoxetine. In the 3 RCTs that defined response as a decrease in MADRS score of \(\geq 50\%\)\(^{35-38}\), the response rate for participants treated with OFC ranged from 27.5% to 60% (vs 10% to 33.9% for participants treated with fluoxetine). In the 3 RCTs that defined response as a decrease in HDRS score of \(\geq 30\%\)\(^{23,35}\), the response rate for participants treated with OFC ranged from 66.7% to 80% (vs 30.6% to 40% for participants treated with fluoxetine). In one other RCT that reported multiple measures of response based on the extent of change in HDRS score\(^{21}\), 73.3% of participants treated with OFC responded with a decrease in HDRS score of \(\geq 25\%\) compared with 61.8% of participants treated with fluoxetine. In the RCTs that included an olanzapine only treatment group, the response rate for this group ranged from 0% to 35.8% and was lower than or similar to the OFC response rate\(^{35-38}\).

Two RCTs with open-label extension phases reported response rate results\(^{32,33}\) (Table 2). Response rates at the end of the open-label extension phase were 33.7% and 70.91% among participants who met response criteria at the end of the randomized phase, and 20.63% and 29.8% among those who did not meet response criteria at the end of the randomized phase. In the nonrandomized trial\(^{39}\), the response (decrease in MADRS score by \(\geq 50\%\)) rate was 53.1%.

Three meta-analyses\(^{18,24,41}\) and two pooled analyses\(^{43,44}\) reported significantly higher response rates in participants treated with OFC compared with those treated with fluoxetine, whereas one meta-analysis\(^{20}\) reported that the response rates did not differ between treatment groups.

Remission rate

Although remission rate definitions varied among the studies, overall, a considerable proportion (16.9% to 73.3%) of participants treated with OFC experienced remission (Table 2). In the 6 RCTs reporting data\(^{21,31,36-38}\), the remission rate at the end of the randomized treatment phase was higher for participants treated with OFC compared with participants treated with fluoxetine alone. In the 3 studies\(^{31,36,37}\) that defined remission as a MADRS score \(\leq 8\) at 2 consecutive visits, remission rates for participants treated with OFC ranged from 16.9% to 60% (vs 13.3% to 20% for participants treated with fluoxetine). In 3 other studies that defined remission differently\(^{21,38}\), remission rates for participants treated with OFC in these studies were 23.8%\(^{38}\), 30.9%\(^{38}\), and 73.3%\(^{21}\) (vs 17.6%, 15.8%, and 40.0%, respectively, for participants treated with fluoxetine). In the RCTs that included an olanzapine only treatment group, the remission rate for this group ranged from 10.8% to 25% and was lower than or similar to the OFC.
Table 2. Primary efficacy outcomes of studies of combined olanzapine-fluoxetine in patients with treatment-resistant depression.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Mean (SD) Change in Depression Score (P value vs OFC)</th>
<th>Response Rate</th>
<th>Remission Rate</th>
<th>Relapse Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized controlled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelton 2001[^{35}]</td>
<td>MADRS: OFC: -13.6 (11.9); FLU: -1.2 (11.0) ((P<0.006))</td>
<td>Unpub. MADRS ≥50%: OFC: 60%; FLU: 10%; OLZ: 0% ((P=0.013) vs OFC)</td>
<td>Unpub. MADRS ≥8 at 2 consecutive visits: OFC: 20%; FLU: 25%; OLZ: 25%</td>
<td>Unpub. MADRS ≥16 after remitting: OFC: 33.3% FLU: 0% OLZ: 100%</td>
</tr>
<tr>
<td>Lilly registry ID #1034[^{41}]</td>
<td>Change significant through OL for OFC</td>
<td>All NS</td>
<td>All NS</td>
<td></td>
</tr>
<tr>
<td>Shelton 2005[^{36}]</td>
<td>MADRS LSM (SE) for OFC WK 0.5: -3.63 (0.65), NS</td>
<td>Unpub. OLE 70.91% in pts who met response criteria at DB end; 20.63% in pts who did not meet response criteria at DB end (NS between DB phase groups)</td>
<td>Unpub. OLE 17.86% (NS between DB phase groups)</td>
<td>Unpub. OLE (remitters with MADRS ≥16 at 2 later visits): 16.67% (NS between DB phase groups)</td>
</tr>
<tr>
<td>Lilly registry ID #3079[^{42}]</td>
<td>WK 1: OFC, -6.90 (0.65), (P=0.007) vs NOR</td>
<td>Unpub. OLE 33.7% in pts who met response criteria at DB end</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 2: -8.99 (0.65), (P<0.001) vs FLU & NOR</td>
<td>Unpub. OLE 36.9% (NS between DB groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 3: -9.22 (0.65), (P<0.001) vs FLU & NOR,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 4: -9.94 (0.66), (P<0.001) vs FLU & NOR,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 5: -9.50 (0.67), (P=0.05) vs FLU & NOR,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 6: -9.36 (0.68), (P=0.03) vs OLZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 7: -8.91 (0.69), (P=0.03) vs OLZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 8: -8.71 (0.70), NS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unpub. OLE Mean (SE) OLE baseline: 20.03 (0.48); change, -2.13 (0.49), (P=0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corya 2006[^{37}]</td>
<td>MADRS: OFC: 43.3%; FLU: 33.9%; VEN: 50.0%; OFC 1/5: 36.4%</td>
<td>Unpub. OLE 33.7% in pts who met response criteria at DB end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilly registry ID #3641[^{13}]</td>
<td>WK 1: OFC, -7.2; FLU, -4.7 ((P=0.03))</td>
<td>Unpub. OLE 36.9% (NS between DB groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 1-6: Significantly greater change in OFC than other groups</td>
<td>Unpub. OLE 12.6%, NS between DB groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 7-11: Significantly greater change in OFC than OLZ and FLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK 12: Significantly greater change in OFC (-4.1) than OFC (-7.7, (P=0.001))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unpub. OLE Mean (SD) OLE baseline: 16.128 (9.551), change: -2.13 (0.49), (P=0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes maintained during OL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li 2006[^{22}]</td>
<td>HDRS WK 2: OFC: -7.69 (5.02); FLU: -5.54 (3.31)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>WK 4: OFC: -14.38 (6.39); FLU: -10.23 (5.83)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>WK 6: OFC: -31.85 (12.78); FLU: -19.00 (11.88), (P<0.05)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>WK 8: OFC: -48.46 (20.75); FLU: -29.54 (16.85), (P=0.05)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Wang 2006[^{23}]</td>
<td>HDRS WK 1: OFC: 18.38 (7.43); FLU: 20.12 (6.81)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>WK 2: OFC: 14.27 (7.63); FLU: 17.95 (7.39), (P=0.05)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>WK 4: OFC: 11.91 (7.85); FLU: 17.19 (7.58), (P=0.01)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

\[^{35}\] Shelton 2001: Lilly registry ID #1034.
\[^{36}\] Shelton 2005: Lilly registry ID #3079.
\[^{37}\] Corya 2006: Lilly registry ID #3641.
\[^{22}\] Li 2006: HDRS.
\[^{23}\] Wang 2006: HDRS.
remission rate \(^{35-38}\). Only 1 RCT with an open-label extension \(^{33}\) reported the remission rate (36.9%). In the nonrandomized trial \(^{39}\), the remission (MADRS score \(\leq 8\) at 2 consecutive visits) rate was 44.1%. Consistent with the individual studies, meta-analyses and pooled analyses reported significantly higher remission rates in participants treated with OFC compared with those treated with fluoxetine \(^{18,20,41,43,44}\).
Relapse rate

Few studies reported relapse rates (table 2). In the RCTs reporting data\(^{31-33}\), the relapse rate in the randomized treatment phase was consistently higher for participants treated with OFC compared with participants treated with fluoxetine alone. In these studies\(^{31-33}\), relapse was defined as a MADRS score ≥16 at 2 consecutive visits after remission. Relapse rates for participants treated with OFC ranged from 15.9% to 33.3% (vs 0% to 5.6% for participants treated with fluoxetine alone). Only 1 RCT with an open-label extension\(^{33}\) reported the relapse rate (12.6%). In the nonrandomized trial\(^{39}\), the relapse (MADRS score ≥16 at 2 consecutive visits after remission) rate was 25.0%. Consistent with the individual studies, 1 meta-analysis reported an odds ratio (fluoxetine relative to OFC) for relapse of 0.27 (95% CI, 0.08 to 0.90), indicating that participants went into remission after treatment with OFC were more likely to relapse than those treated with fluoxetine\(^{20}\).

Safety outcomes

Discontinuations

In the RCTs\(^{21-23, 35-38}\), the proportion of participants who discontinued during the randomized treatment phase was similar for participants treated with OFC and those treated with fluoxetine alone (table 3). The discontinuation rate for any reason ranged from 0% to 26.0% (vs 0% to 30% for fluoxetine), because of an AE from 0% to 13.5% (vs 0% to 5.0% for fluoxetine), and because of lack of efficacy from 0% to 5.3% (vs 0% to 10% for fluoxetine). In the RCTs with open-label extensions\(^{31-34}\), the proportion of participants who discontinued was generally low and increased with the duration of the extension phase. The discontinuation rate for any reason ranged from 4.5% to 47.0%, because of an AE from 10.2% to 18.8%, and because of lack of efficacy from 5.7% to 18.4%. In the nonrandomized trial\(^{39}\), the proportion of participants who discontinued for any reason, an AE, and lack of efficacy was 74.5%, 24.5%, and 14.1%, respectively. Three meta-analyses\(^{18, 41, 42}\) and one pooled analysis\(^{44}\) examined discontinuation rates. The odds ratio or the increase in absolute risk of discontinuation for any reason was not significant in participants treated with OFC compared with those treated with fluoxetine alone\(^{18, 41, 42, 44}\). The odds ratio or the increase in absolute risk of discontinuation because of an AE was significant in participants treated with OFC compared with those treated with fluoxetine alone\(^{18, 41, 42, 44}\).

Weight gain

In the RCTs reporting data\(^{21, 35-38}\), participants treated with OFC consistently experienced more weight gain in the randomized phase compared with participants treated with fluoxetine alone. Mean weight gain for participants treated with OFC ranged from 3.28 kg to 6.67 kg (vs -1.42 kg to 0.88 kg for participants treated with fluoxetine). In the RCTs with open-label extensions\(^{31-34}\), the proportion of participants treated with OFC who had weight gain ≥10% total body weight ranged from 8.3% to 24.5%. In the nonrandomized trial\(^{39}\), mean weight gain was 5.6 kg and the proportion of participants who had weight gain ≥10% total body weight was 31%. Consistent with the individual studies, 1 meta-analysis\(^{20}\) and 1 pooled analysis\(^{44}\) reported significantly greater weight gain in participants treated with OFC compared with those treated with fluoxetine. The meta-analysis reported an odds ratio for weight gain ≥10% of 16.28 (95% CI, 7.02 to 37.76), an effect size of +4.20 kg (95% CI, 3.79 to 4.61; \(P < 0.001\)) and a number needed to harm for weight gain of 9 (95% CI, 5 to 29)\(^{20}\). The pooled analysis reported a higher proportion of participants with weight gain ≥7% and a greater mean (SD) weight gain for those treated with OFC (40.4%; +4.42 [3.75] kg) than those treated with fluoxetine (2.3%; −0.15 [2.64] kg; \(P < 0.001\) both comparisons)\(^{44}\). Another pooled analysis identified early weight gain (≥2 kg after 2 weeks) as a predictor of substantial weight gain (≥10 kg after 26 weeks)\(^{40}\).

Metabolic parameters

Data on metabolic parameters (plasma glucose, total cholesterol, triglycerides, HbA1c) were mixed, with some, but not all, RCTs reporting differences between treatment groups in the change from baseline or incidence of low/high levels. Three RCTs\(^{36-38}\) reported a significantly greater change in plasma total cholesterol in participants treated with OFC than in those treated with fluoxetine for 8 to 12 weeks. In all studies reporting data\(^{31-34, 38, 39}\), including the longer-term, open-label studies, the proportion of participants treated with OFC whose metabolic parameters were abnormally high ranged from 0.8% to 7.7%. One pooled analysis\(^{44}\) reported that increases in plasma glucose and total cholesterol concentrations were significantly greater in participants treated with OFC than in participants treated with fluoxetine. One meta-analysis\(^{20}\) reported an odds ratio (OFC relative to fluoxetine) for elevated metabolic parameters of 4.46 (95% CI, 2.07 to 9.58) and a number needed to harm of 10 (95% CI, 5 to 29).
Table 3. Safety outcomes of studies of olanzapine-fluoxetine combined in patients with treatment-resistant depression.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Discontinuations</th>
<th>Common Adverse Events*</th>
<th>Weight Gain</th>
<th>Metabolic Parameters*</th>
<th>Extrapyramidal Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelton 2001<sup>35</sup></td>
<td>Unpub. DB</td>
<td>Any reason: OFC, 10%; FLU, 30%; OLZ, 25%; AE: OLZ, 12.5% (1 ataxia)</td>
<td>Unpub. DB</td>
<td>Somnolence: OFC, 60%; FLU, 50%; OLZ, 75%; Increased appetite: OFC, 80%; FLU, 20%; OLZ, 75%</td>
<td>Mean (SD) weight gain (kg): OFC, 6.67 (4.54), P=0.002; FLU, 0.88 (1.33), P=0.06; OLZ, 6.07 (2.57), P=0.008</td>
</tr>
<tr>
<td></td>
<td>Unpub. OLE 4.5% (1 AE, fever secondary to infection)</td>
<td>Unpub. DB</td>
<td>Lack of efficacy: OFC, 40%; FLU, 10%; OLZ, 25%</td>
<td></td>
<td>Unpub. OLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unpub. OLE</td>
</tr>
<tr>
<td>Shelton 2005<sup>36</sup></td>
<td>Any reason: OFC, 20.5%; FLU, 19.7%; OLZ, 22.2%; NOR, 11.8%</td>
<td>Unpub. DB</td>
<td>Somnolence: OFC, 17%; FLU, 12%; OLZ, 22%; NOR, 15%</td>
<td>Mean (SD) weight gain (kg): OFC, 3.28 (3.5); FLU, -1.42 (2.61); OLZ, 2.94 (2.98); NOR, 0.80 (3.06); overall P<0.001</td>
<td>Total nonfasting cholesterol: change from baseline greater in OFC (+0.36 mmol/L) than FLU (+0.06 mmol/L, P<0.001), OLZ (+0.12 mmol/L, P=0.007), and NOR (+0.03 mmol/L, P=0.004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unpub. OLE</td>
<td>Weight gain >10% of OFC, 7.8%; FLU, 0%; OR, 4.3%; P=0.02 OR, 0%</td>
<td>Weight gain >10% of OFC, 13.7% Mean weight gain (OL only): 2.9 kg</td>
<td>Nonfasting glucose: no difference between groups in change from baseline or % pts with baseline glucose <200 mg/dL who had glucose ≥200 mg/dL during study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publication</td>
<td>Discontinuations</td>
<td>Common Adverse Events</td>
<td>Weight Gain</td>
<td>Metabolic Parameters</td>
<td>Extrapyridal Symptoms</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Corya 2006 [37]</td>
<td>Unpub. DB</td>
<td>Weight gain: OFC, 25% ((P=0.001 \text{ vs FLU})); FLU, 13%; OLZ, 26%; VEN, 5%; OFC 1/5, 19%; Somnolence: OFC, 22% ((P=0.001 \text{ vs FLU})); FLU, 16%; OFC 1/5, 19%; Increased appetite: OFC, 16% ((P=0.004 \text{ vs FLU})); FLU, 11%; OLZ, 17%; VEN, 5%; OFC 1/5, 22%; Dry mouth: OFC, 13%; FLU, 7%; OLZ, 16%; VEN, 5%; OFC 1/5, 7%; Asthenia: OFC, 12%; FLU, 8%; OLZ, 18%; VEN, 8%; Parkinsonism: OFC, 11% ((P=0.004 \text{ vs FLU})); FLU, 0%; OLZ, 8%; VEN, 2%; OFC 1/5, 5%; Headache: OFC, 10% ((P=0.004 \text{ vs FLU})); FLU, 17%; OLZ, 10%; VEN, 17%; OFC 1/5, 24%;</td>
<td>Mean (SD) weight gain (kg): OFC, 4.3 (4.1), significantly greater than FLU or VEN; FLU, 0.0 (2.7); OLZ, 3.5 (3.7); VEN, 0.6 (3.0)</td>
<td>Nonfasting glucose: NS between groups</td>
<td>Parkinsonism: OFC, 2.7%; FLU 8.9%; OLZ, 0.0%; VEN, 3.5%; Akathisia: OFC, 10.1%; FLU, 3.6%; OLZ, 14.3%; VEN, 5.6%; OFC 1/5, 3.8%</td>
</tr>
<tr>
<td>Li 2006 [32]</td>
<td>Any reason: 0%</td>
<td>Dry mouth: OFC, 21.2%; FLU, 19.4%; Weight gain: OFC, 12.1%; FLU, NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Wang 2006 [23]</td>
<td>AE: 1 pt discontinued due to weight gain</td>
<td>Blurred vision: OFC, 12.1%; FLU, 13.9%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Thase 2007 [38]</td>
<td>Pooled</td>
<td>Dry mouth: OFC, 13.5%; FLU, 16.1%; FLU, 2.4%; (P<0.01 \text{ vs OFC and OLZ}); Lack of efficacy: OFC, 3.5%; OLZ, 9.6%; (P=0.015 \text{ vs FLU}); OFC, 6.3%</td>
<td>Pooled Mean (SD) weight gain (kg): OFC, 4.9 (3.5); FLU, 0.4 (2.3); (P=0.001 \text{ vs OFC}); OLZ, 5.5 (3.9)</td>
<td>Total cholesterol: change (mean mg/dL) [SD] greater in OFC ((+15.1 [32.0]) \text{ vs FLU} ((+0.8 [31.7]) \text{ and OLZ} ((+2.7 [34.0]) \text{, } P=0.001 \text{ for both Triglycerides: change NS between groups Nonfasting glucose: % with <140 mg/dL at baseline and ≥200 mg/dL: OFC, 1.9%; FLU, 1.8%; OLZ, 4.2%; all NS High HbA1c: OFC, 5.6%; FLU, 0%; } P=0.002</td>
<td>Parkinsonism: OFC, 2.6%; FLU 1.0%; OLZ, 1.5%; Akathisia: OFC, 9.6%; FLU, 6.9%; OLZ, 9.2%</td>
</tr>
<tr>
<td>Corya 2006 [37]</td>
<td>Unpub. OLE</td>
<td>Any reason: 47.0%</td>
<td>Mean (SD) weight gain (kg): OFC, 4.3 (4.1), significantly greater than FLU or VEN; FLU, 0.0 (2.7); OLZ, 3.5 (3.7); VEN, 0.6 (3.0)</td>
<td>Nonfasting glucose: NS between groups</td>
<td>Parkinsonism: OFC, 2.7%; FLU 8.9%; OLZ, 0.0%; VEN, 3.5%; Akathisia: OFC, 10.1%; FLU, 3.6%; OLZ, 14.3%; VEN, 5.6%; OFC 1/5, 3.8%</td>
</tr>
<tr>
<td>Corya 2006 [37]</td>
<td>Unpub. OLE</td>
<td>Lack of efficacy: 18.9%</td>
<td>Mean (SD) weight gain (kg): OFC, 4.3 (4.1), significantly greater than FLU or VEN; FLU, 0.0 (2.7); OLZ, 3.5 (3.7); VEN, 0.6 (3.0)</td>
<td>Nonfasting glucose: NS between groups</td>
<td>Parkinsonism: OFC, 2.7%; FLU 8.9%; OLZ, 0.0%; VEN, 3.5%; Akathisia: OFC, 10.1%; FLU, 3.6%; OLZ, 14.3%; VEN, 5.6%; OFC 1/5, 3.8%</td>
</tr>
<tr>
<td>Corya 2006 [37]</td>
<td>Unpub. OLE</td>
<td>AE: 11.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Olanzapine and fluoxetine combined as therapy for treatment-resistant depression

Common Adverse Events

In the RCTs, participants treated with OFC consistently experienced a higher incidence of increased appetite and weight gain during the randomized phase compared with participants treated with fluoxetine alone (table 3). Not including the study reported by Shelton et al 2001, in which only 10 participants were treated with OFC, weight gain/increased was experienced by 12 to 35% of participants (vs 4 to 13% of participants treated with fluoxetine) and increased appetite was experienced by 15 to 32% of participants (vs 5% to 7% of participants treated with fluoxetine). These findings are supported by a pooled analysis of 5 RCTs. The incidence of other AEs was generally similar between participants treated with OFC and those treated with fluoxetine alone. These findings are supported by 2 meta-analyses, which reported no increased risk of experiencing any AE in participants treated with OFC compared with those treated with fluoxetine alone. In addition to weight gain, other adverse events that were consistently reported as being common among the

Publication	Discontinuations	Common Adverse Events	Weight Gain	Metabolic Parameters	Extrapyramidal Symptoms
Feng 2008 | No discontinuations due to AE | OFC: 14 AEs (weight gain, dry mouth, hypersomnia, headache, transient decrease in white blood count, minor liver function abnormality) FLU: 8 AEs (dry mouth, hypersomnia, blurred vision) | OFC: 6.7% had weight gain >5 kg | No differences between groups in incidence of low or high cholesterol, low or high fasting glucose, or low or high nonfasting glucose | Unpub. OLE: Low cholesterol: 0.9% High cholesterol: 2.1% Low fasting glucose: 1.1% High fasting glucose: 3.2% Low nonfasting glucose: 2.9% High nonfasting glucose: 0.8% Low HbA1c: 0% High HbA1c: 4.5% Low triglycerides: 0.2% High triglycerides: 1.7%

Prospective, nonrandomized, open-label study

Corya 2003 | Any reason: 74.5% AE: 24.5% Lack of efficacy: 14.1% | Somnolence: 47.7%; weight gain: 39.8%; dry mouth: 37.1%; increased appetite: 32.9%; headache: 22.3%; rhinitis: 22.1%; asthenia: 19.3%; tremor: 18.5%; nausea: 15.7%; anxiety: 13.9%; pain: 12.7%; diarrhea: 12.5%; dizziness: 12.5%; insomnia: 11.8%; nervousness: 11.6%; libido decreased: 11.4%; pharyngitis: 10.4% | Mean (SD) weight gain: 5.6 (6.6) kg, P<0.001 Weight gain ≥10%: 31% | Nonfasting glucose increased by 6.2 (32.3) mg/dL Abnormally high glucose (≥200 mg/dL): anytime, 2.9%; at end, 1.3% Treatment-emergent diabetes: 1.1% Abnormally high cholesterol: anytime, 4.6%; at end, 1.5% | Parkinsonism: 4.5% Akathisia: 11.3% Dyskinesia: 1.8%

1 Adverse events that occurred in at least 10% of participants treated with olanzapine-fluoxetine combined.

2 Not all studies reported whether metabolic parameters were measured under fasting or nonfasting conditions.

Abbreviations: AE = adverse event, DB = double-blind, FLU = fluoxetine, HbA1c = glycosylated hemoglobin, NOR = nortriptyline, NR = not reported, NS = not significant, OFC = olanzapine-fluoxetine combined, OL = open-label, OLE = open-label extension, OLZ = olanzapine, pts = participants, SD = standard deviation, unpub. = unpublished data from study (obtained via Lilly Trials), VEN = venlafaxine.
studies for participants treated with OFC included dry mouth, somnolence/sleepiness/sedation, asthenia, and headache. One meta-analysis and one pooled analysis reported that some of these AEs were more likely in participants treated with OFC compared with those treated with fluoxetine alone. The same AEs were also reported in the RCTs with open-label extensions and the nonrandomized trial, with generally higher incidence rates in studies with longer duration.

Extrapyramidal symptoms

In the RCTs reporting data, the incidence of extrapyramidal symptoms (parkinsonism, akathisia, dyskinesia) in participants treated with OFC (0.0% to 30.0%) was similar to those treated with fluoxetine (0.0% to 33.3%). In the RCTs with open-label extensions, the proportion of participants who experienced extrapyramidal symptoms was generally low (0.2 to 15.0%). Similar incidence rates (1.8 to 11.3%) were reported in the nonrandomized trial. One pooled analysis reported no difference in extrapyramidal symptoms between participants treated with OFC and those treated with fluoxetine or olanzapine only.

DISCUSSION

In this systematic review, we have compiled evidence from prospective studies on the use of OFC in patients with TRD. Importantly, we have included unpublished evidence from longer-term, open-label extension studies that have not been presented previously. Although the definition of TRD varied among the studies, the collective evidence indicates that OFC is more efficacious than fluoxetine alone in the alleviation of depressive symptoms in patients with TRD. Treatment with OFC was associated with earlier improvements and higher response and remission rates than fluoxetine treatment, and these improvements were sustained during longer-term treatment. However, weight gain, increased appetite, and changes in metabolic parameters were commonly reported by participants treated with OFC. Clinicians should consider the potential benefits of short- and/or long-term OFC treatment and the risk of changes in metabolic parameters in individual patients with TRD. Active management of patients with TRD, in which lifestyle modifications are combined with pharmacological intervention, may help improve depressive symptoms whilst minimizing the potential risk of changes in metabolic parameters.

Efficacy

The evidence from double-blind RCTs suggests that short-term (4 to 8 weeks) treatment with OFC is at least as efficacious as fluoxetine. All studies reported significant improvements from baseline in depression scores (MADRS, HDRS) in participants treated with OFC. The greater efficacy of OFC compared with fluoxetine was confirmed by meta-analyses. Although OFC treatment did not always result in significantly greater improvements at endpoint than fluoxetine or other antidepressants, the time to response was usually much more rapid, occurring within the first few weeks of treatment. This rapidity of response could be especially critical in patients who are despondent after repeatedly failing to respond to treatment or who may have suicidal tendencies. Both response and remission rates were generally higher in participants treated with OFC than in those treated with fluoxetine. However, in the few studies where it was reported, the relapse rate was higher, although not significantly, with OFC than with fluoxetine. The lower relapse rate among participants treated with fluoxetine may reflect a subpopulation who did not have “true” TRD and were therefore able to respond and maintain their response to fluoxetine. Alternatively, patients may find fluoxetine more tolerable than OFC, as suggested by the rates of discontinuation because of an AE, and thus may adhere better to treatment. Finally, relapses among those who responded to OFC may reflect the persistent, cyclical nature of TRD (figure 1).

Figure 2. Publication flow diagram. *No additional studies were identified on LillyTrials.com; however, unpublished data from the website were used in this review. Abbreviations: OFC = olanzapine-fluoxetine combined, TRD = treatment-resistant depression.
The efficacy of OFC is sustained during longer-term treatment, as demonstrated by open-label studies lasting up to 76 weeks. Improvements in depressive symptoms seen in the double-blind RCTs were maintained or improved further during open-label extension phases, even in those studies with long (≥20 weeks) treatment duration. Response and remission rates were also maintained during longer-term treatment. Interestingly, in 2 studies, a considerable proportion (approximately 20%-30%) of participants who did not respond to OFC during the double-blind phase responded during longer-term treatment. These results, together with those from short-term studies, suggest that although some patients respond to OFC treatment rapidly, others may take longer to respond. We cannot know if these late responders would also have responded to their previous treatments or to fluoxetine alone, if they had persisted longer. Relapse rates during longer-term treatment with OFC (12.6-25.0%) were similar to those during short-term treatment (15.9-33.3%), which again suggests that the effectiveness of OFC is maintained in most patients. The effectiveness of OFC in the prevention of relapse during long-term treatment was addressed recently in a study published after we conducted our literature search. In this study, participants with TRD who responded to 18 to 20 weeks of open-label OFC treatment were randomized to continue OFC (n = 221) or switch to fluoxetine treatment (n = 223) for up to 27 weeks. The relapse rate was significantly lower (15.8 vs 31.8%) and the time-to-relapse was significantly longer in participants who continued OFC treatment compared with those who switched to fluoxetine. However, as reported by the studies included in this review, continued treatment with OFC was associated with greater weight gain and metabolic changes than treatment with fluoxetine. The results of this study suggest that continuation of OFC treatment in patients who respond may be preferable to switching to fluoxetine alone, but that this must be weighed against the potential risk of changes in metabolic parameters.

Safety

The potential risk of weight gain and changes in metabolic parameters should be considered when prescribing OFC, particularly in the longer term. In the RCTs, weight gain was generally greater or more common in participants treated with OFC than in those treated with fluoxetine. In the open-label studies, the proportion of participants with weight gain ≥10% generally increased with treatment duration, reaching 24.5% in a 52-week study and 31% in a 76-week study. Changes in metabolic parameters, such as plasma glucose and cholesterol concentrations, were less consistent between studies. However, when data from several short-term RCTs were pooled, participants treated with OFC experienced generally greater treatment-emergent increases from normal to high cholesterol levels (but not glucose or triglycerides) or abnormally high metabolic parameters (pooled cholesterol, glucose, HbA1c, and triglycerides). Prescribing physicians should ensure that patients treated with OFC are aware of the risk of increased weight, and both physicians and patients should take appropriate measures, such as preventive weight management programs, to minimize weight gain and potential changes in metabolic parameters. Other common AEs experienced by participants treated with OFC included dry mouth, somnolence/sleepiness, sedation, asthenia, and headache. Although some of these AEs were more commonly associated with OFC treatment than with fluoxetine treatment, they were generally well tolerated, as demonstrated by the relatively low rates of discontinuation due to an AE (<15% in short-term RCTs). Indeed, where reported, the most common AE leading to discontinuation was weight gain. The incidence of extrapyramidal symptoms was generally similar in participants treated with OFC, fluoxetine, or olanzapine.

Definition of TRD

Although all studies in this review focused on the treatment of TRD, the precise definition of TRD varied, reflecting both an evolving definition of the condition and a lack of consensus amongst clinical psychiatrists. Elements of the TRD definition that varied among studies included the number and duration of failed treatment trials, whether failed treatment occurred in the current or previous depressive episodes, and whether failed treatments included different or specific classes of antidepressants. Thus, the disparate definitions of TRD in the studies included in this review are likely to have contributed to the variation in efficacy, response rates, and remission rates. However, despite the variation across the studies, the relative efficacy of OFC reported in the studies was remarkably consistent. Currently, the most clinically accepted, and most frequently used in clinical practice, definition of TRD specifies that patients should have a demonstrated failure to respond to at least 2 adequate trials of antidepressants with different mechanisms of action. Only 4 of the included RCTs used this definition of TRD; in 3 of these RCTs, OFC was more efficacious than fluoxetine at study endpoint.
Unfortunately, these RCTs were small, not blinded, and/or poorly reported. In contrast, greater efficacy of OFC at endpoint was reported by only 138 of the 4 RCTs that did not require at least 2 previous treatment failures36-38. The conflicting results across these RCTs may, in part, be because some of the included participants may not have been truly treatment resistant and were able to respond to pharmacotherapy by study endpoint. Another more stringent definition of TRD requires treatment failures to be documented within the current depressive episode48. Only 2 of the included RCTs confirmed treatment resistance during a screening or lead-in phase35, 36. Studies without a confirmatory phase may have included subgroups of participants that were not truly treatment resistant. The 2 parallel RCTs published by Thase et al required treatment failure to be within the current episode; however, a single treatment failure was sufficient for study entry38. In the RCT of Corya et al published in 200637, subgroup analysis indicated that participants whose previous treatment failure occurred during the current episode achieved significantly greater improvements in MADRS scores at endpoint when treated with OFC than when treated with fluoxetine.

An accurate assessment of the effectiveness of OFC or other treatments in patients with TRD depends on the use of a uniform and clinically accepted definition of the condition. As mentioned, the definition most commonly used in clinical practice, as well as in many trials, is based on the failure to respond to two adequate antidepressant trials47. The term “adequate” is generally interpreted as sufficient dosing for at least 4 weeks. However, as demonstrated by the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study6 and the Group for the Study of Resistant Depression (GSRD)49, 4 weeks is often not long enough to achieve a response. The need for longer antidepressant trials has been recognized by some clinical guidelines for MDD, such as those from the National Institute for Health and Clinical Excellence (NICE)50 and the Institute for Clinical Systems Improvement (ISCI)51. Both the NICE and ISCI guidelines suggest that antidepressant therapies be trialed for at least 6 weeks before considering alternative treatment strategies50-51 (Figure 1). However, in practice, it may be difficult for clinicians and patients to persist with an apparently ineffective therapy, especially if the patient has very severe depressive symptoms. Further, the true goal of treatment is not just response, but remission; as reported in the pooled analysis of Tohen et al, the absence of early (within 2 weeks) improvement with OFC treatment is highly predictive of ultimate treatment failure43. Thus, clinicians may decide to switch treatments after only a few weeks if the patient is not responding. Notably, neither the NICE nor the ISCI guidelines specifically address the definition of TRD; indeed, the most recent (2009) update of the NICE guidelines has moved away from the term, suggesting that it may be used to inappropriately categorize patients52. In Latin America, most clinicians prefer the term “refractory depression”; however, the definitions are essentially the same as those used in the United States or Europe52. In the absence of a precise and universally accepted definition of TRD, the collective evaluation of prospective, comparative trials of treatment options is limited.

Strengths and limitations

Unlike previous systematic reviews of OFC in the treatment of TRD, our review included both published and unpublished data and focused specifically on data from longer-term studies. In addition, there were no restrictions on language, which allowed inclusion of several studies published in Chinese. However, as with other systematic reviews, our review is limited by the quality and heterogeneity of the studies available for inclusion. In addition, the few longer-term studies identified varied widely in duration and were all open-label, noncomparative studies. In addition, a large proportion of participants in the longer-term studies discontinued, preventing extended follow-up of their outcomes. Longer-term RCTs that compare OFC with other treatment options would help address the existing gaps in knowledge, but such trials could be difficult if participants are unwilling to remain on treatments that are not efficacious or tolerable.

CONCLUSION

In this systematic review, we have presented evidence from prospective studies that supports the efficacy of OFC in the treatment of TRD, despite differences in the functional definition of the condition. Importantly, we have included unpublished data from longer-term studies that indicate that OFC efficacy is sustained. However, in both short- and longer-term studies, changes in metabolic parameters were reported in participants treated with OFC, which may be clinically significant in patients who require ongoing treatment. Physicians should consider OFC as an effective and generally well-tolerated treatment for patients with TRD, although the risks of weight gain and changes in metabolic parameters should be carefully managed.

Acknowledgements

Funding support: This study was sponsored by Eli
Olanzapine and fluoxetine combined as therapy for treatment-resistant depression

Lilly and Company, manufacturer/licensee of olanzapine and fluoxetine hydrochloride (Symbyax®). Medical writing assistance was provided by Rebecca Lew, PhD CMPP, and Serina Stretton, PhD CMPP, of ProScribe, part of the Envision Pharma Group, and was funded by Eli Lilly. ProScribe’s services complied with international guidelines for Good Publication Practice (GPP2).

Role of the sponsor: Eli Lilly and Company was involved in the study design, data collection, data analysis, and preparation of the manuscript.

Role of contributors: All authors participated in the design of the literature search strategy and eligibility criteria, approved the eligible references for inclusion in the review, reviewed and interpreted the extracted data from each publication, and were involved in the drafting, critical revision, and approval of the final version of the manuscript.

Conflicts of interest: Jorge M TAMAYO has been a consultant and speaker for Eli Lilly, Pfizer, Glaxo SmithKline, Axon-Pharma/Biocodex, and Janssen. Yolanda PICA-RUIZ has been a consultant and/or speaker for Eli Lilly, Roche, and Merck Sharp & Dohme. Ignacio RUIZ is an employee of Eli Lilly and Company, Mexico.

REFERENCES

