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Background.Background.Background.Background.Background. This study aims to identify key genes and pathways involved in non-alcoholic fatty liver disease (NAFLD). MaterialMaterialMaterialMaterialMaterial
and methods.and methods.and methods.and methods.and methods. The dataset GSE48452 was downloaded from Gene Expression Omnibus, including 14 control liver samples, 27
healthy obese samples, 14 steatosis samples and 18 nonalcoholic steatohepatitis (NASH) samples. Differentially expressed genes
(DEGs) between controls and other samples were screened through LIMMA package. Then pathway enrichment analysis for DEGs
was performed by using DAVID, and alterations of enriched pathways were determined. Furthermore, protein-protein interaction
(PPI) networks were constructed based on the PPI information from HPRD database, and then, networks were visualized through
Cytoscape. Additionally, interactions between microRNAs (miRNAs) and pathways were analyzed via Fisher’s exact test. Results Results Results Results Results..... A
total of 505, 814 and 783 DEGs were identified for healthy obese, steatosis and NASH samples in comparison with controls, respec-
tively. DEGs were enriched in ribosome (RPL36A, RPL14, etc.), ubiquitin mediated proteolysis (UBE2A, UBA7, etc.), focal adhe-
sion (PRKCA, EGFR, CDC42, VEGFA, etc.), FcγR-mediated phagocytosis (PRKCA, CDC42, etc.), and so on. The 27 enriched

pathways gradually deviated from baseline (namely, controls) along with the changes of obese-steatosis-NASH. In PPI networks,
PRKCA interacted with EGFR and CDC42. Besides, hsa-miR-330-3p and hsa-miR-126 modulated focal adhesion through targeting
VEGFA and CDC42. Conclusions.Conclusions.Conclusions.Conclusions.Conclusions. The identified DEGs (PRKCA, EGFR, CDC42, VEGFA), disturbed pathways (ribosome, ubi-
quitin mediated proteolysis, focal adhesion, FcγR-mediated phagocytosis, etc.) and miRNAs (hsa-miR-330-3p, hsa-miR-126, etc.)
might be closely related to NAFLD progression. These results might contribute to understanding NAFLD mechanism, conducting ex-
perimental researches, and designing clinical practices.

Key words.Key words.Key words.Key words.Key words. Non-Alcoholic Steatohepatitis. Differentially expressed genes. Pathway. Network. microRNA.

March-April, Vol. 15 No. 2, 2016: 190-199

ORIGINAL ARTICLE

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most
common cause of liver disease worldwide with a preva-
lence of 15-30% in Western populations.1-4 In patients
with NAFLD, nearly one quarter is nonalcoholic steato-
hepatitis (NASH),5 which is defined as the presence of he-
patic steatosis and inflammation with hepatocyte injury
(ballooning) with or without fibrosis.6 Many conditions,
including obesity and location of fat storage, play a role in
the pathogenesis of NAFLD, especially NASH.7 Howev-
er, the molecular mechanism underlying NAFLD is still
vague.

In the past years, NAFLD-related genes and microR-
NAs (miRNAs) have been discovered. Previous studies
have shown elevated levels of C-reactive protein (CRP),
interleukin-6 (IL-6) and vascular endothelial growth fac-
tor (VEGF) in NASH patients compared with controls.8,9

The genetic variant I148M (rs738409) in Patatin-like
phospholipase domain-containing 3 (PNPLA3) affects
the secretion of hepatic very low density lipoproteins
(VLDL) and promotes intracellular lipid accumulation in
the liver by reducing the lipidation of VLDL, facilitating
NAFLD development.10 Besides, miRNA-10b has been
proven to regulate steatosis level by targeting peroxisome
proliferator-activated receptors (PPAR)-α expression in
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NAFLD.11 It’s reported that apoptosis-related p53 overex-
pression activated miR-34a/SIRT1/p53 pathway in
NAFLD morbid obese patients.12

Along with the development of high-throughput tech-
nology, microarray analysis and next-generation sequenc-
ing have been widely utilized to identify candidate
disease-related genes and pathways. Based on RNA
sequencing analysis of Shp(-/-) mice, novel gene signa-
tures implicated in NASH have been identified and
validated, including tetraspanin 4 (TSPAN4), peptidoglycan
recognition protein 2 (PGLYRP2), thrombospondin 1
(THBS1), dual specific phosphatase-4 (DUSP4), etc.13

Through gene expression profiling and gene set enrich-
ment analysis, Yoneda, et al. have found genes involved in
NASH, including 27 up-regulated gene sets and 25 down-
regulated gene sets.14 By analyzing gene expression pro-
files in high- and low-risk NAFLD patients, Moylan, et al.
has found a 64-gene profile that can differentiate severe
NAFLD from mild NAFLD and an independent 20-gene
subset that correlates with NAFLD severity.15 Through
array-based DNA methylation and mRNA expression
profiling analyses of liver samples from healthy obese pa-
tients, steatosis patients, NASH patients, and controls, Ah-
rens, et al.16 have discovered NAFLD-specific mRNA
expression and DNA methylation of nine genes coding for
key enzymes in intermediate metabolism (including PC,
ACLY and PLCG1) and insulin/insulin-like signaling (in-
cluding IGF1, IGFBP2 and PRKCE). It’s also found that
NAFLD-associated methylation changes were partially re-
versible. However, the pathways changed in NAFLD pro-
gression, and the miRNAs that regulate these altered
pathways are still unclear.

In this study, the microarray dataset GSE48452 up-load-
ed by Ahrens, et al.16 was further analyzed to screen differ-
entially expressed genes (DEGs) between healthy obese
samples, steatosis samples, NASH samples, and controls.
Then, pathway enrichment analysis was performed for
DEGs, and variation of enriched pathways at different sta-
tuses was detected. Furthermore, protein-protein interac-

tion (PPI) networks were constructed. Additionally, miR-
NAs targeting DEGs enriched in pathways were predict-
ed. These results might be conducive to further
experimental studies and provide better understanding of
the nosogenesis of NAFLD.

MATERIAL AND METHODS

Gene expression data

The gene expression data set GSE48452 was download-
ed from Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/), including 14 control liver
samples (group C), 27 healthy obese samples (group H),
14 steatosis samples (group S) and 18 NASH samples
(group N). It should be noted that only gene expression
data were downloaded, and thus the sample size and infor-
mation of enrolled individuals are different from the pre-
vious article of Ahrens, et al. In addition, information on
sample number, age, body mass index, sex, fat area, inflam-
mation, fibrosis, and non-alcoholic fatty liver disease activ-
ity score were collected from GEO (Table 1). Gene
expression levels were measured by using [HuGene-1_1-st]
Affymetrix Human Gene 1.1 ST Array [transcript (gene)
version] (Affymetrix Inc., Santa Clara, California, USA).
For the gene expression experiment, all patients provided
written and informed consent, and its protocol was
approved by the institutional review board (“Ethikkom-
mission der Medizinischen Fakultät der Universität Kiel,”
D425/07, A111/99).16

DEGs screening

Linear Models for Microarray Data (LIMMA)
package17 of Bioconductor (available at http://
www.bioconductor.org/packages/release/bioc/html/) was
used to identify genes that were differentially expressed
between healthy obese and control samples (H vs. C), be-
tween steatosis and control samples (S vs. C), and between

Table 1. Overview for normal controls, healthy obese samples, steatosis samples, and NASH samples.

Normal controls (C) Healthy obese (H) Steatosis (S) NASH (N)

Number 14 27 14 18
Age 52 (23-77) 45 (33-60) 42 (24-65) 45 (32-58)
BMI 25 (17-31) 41 (29-56) 48 (40-60) 49 (24-70)
Sex (% male) 36 7 29 22
Fat (area in %) 1 (0-3) 2 (0-7) 36 (10-70) 72 (40-90)
Inflammation (0-3) 0 (0-1) 0 (0-1) 0 (0-1) 2 (1-3)
Fibrosis (0-4) 0 (0-2) 0 (0-1) 0 (0-1) 1 (0-4)
NAS (0-8) 0 (0-1) 0 (0-2) 2 (1-3) 5 (4-7)

The median and the interquartile range are provided for all numeric parameters. NASH: nonalcoholic steatohepatitis. BMI: body mass index. NAS: non-alco-
holic fatty liver disease activity score.
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NASH and control samples (N vs. C). Because the DEGs
with |log2 fold change (FC)| > 1 were rare, |log2 FC| g
0 and p-value < 0.01 were chosen as the cut-off criteria.

Pathway enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways enriched by the three sets of DEGs were re-
vealed by using the Database for Annotation, Visualization
and Integrated Discovery (DAVID, available at http://
david.abcc.ncifcrf.gov/).18 The p-value < 0.1 was set as the
cut-off criterion.

Scoring altered pathways

Three sets of significantly enriched pathways (H vs. C,
S vs. C, and N vs. C) were combined, and a total of N path-
ways were obtained. The deviations of every pathway at
status H, status S, and status N from status C were calcu-
lated based on gene expression levels.19 Firstly, DEGs
from the gene pool of a specific pathway were selected
out. Secondly, p-value was converted to Z-score (Z) by
using inverse cumulative distribution function. Finally, an
alteration score of a pathway, namely A (P), was deter-
mined for pathway P based on DEG Z-scores and follow-
ing algorithm:

Several issues should be taken into account. First, not
all DEGs involved in a pathway had significant influence
on this pathway. For example, changes of downstream
genes might be induced by abnormalities of upstream genes.
In other words, changes of upstream genes involved in
pathway could have more significant influence on path-
ways. Second, number of genes varies in different
pathways. Thus, random perturbation treatment was ap-
plied to eliminate the influence of pathway size. During
calculation, Z-score of DEGs was sorted in descending
order. Bigger Z-score meant higher degree of differential
expression. Assuming that pathway P contained k DEGs,
when t genes (1 < t < k) had maximum average Z-score,
these t genes were considered to have the most signifi-
cant contribution to the pathway P, and then, A (P) was
also calculated. In order to eliminate the influence of
pathway size, normalization of each A (P) to Acorrected(P)
score was accomplished by correcting background dis-
tributions based on the mean and standard deviation
which were derived from A(P) scores of 10,000 random
sets of k genes.

Construction of
protein-protein interaction networks

PPIs were obtained from Human Protein Reference
Database (HPRD, available at http://www.hprd.org/)20 via
Python program.21 If a protein normally expressed in hu-
man interacted with at least three DEGs, this protein
would be selected to construct PPI networks together
with DEGs. Then, PPI networks were visualized by using
Cytoscape (available at http://cytoscape.org/).22 Moreover,
in order to disclose changes of the networks at different
statuses, topological properties of these networks were an-
alyzed by using network analysis (a plugin in Cytoscape),
such as degree, average shortest path length (ASPL), clus-
tering coefficient (CC) and topological coefficient (TC).

Prediction of miRNAs
associated with significant pathways

The common regulatory relationships between miRNAs
and DEGs were abstracted from three databases, including
miRecord,23 miRTarBase24 and Tarbase 6.0.25 A total of 5,489
interactions were obtained, containing 482 miRNAs and
2,331 target genes. Then, Fisher’s exact test26 was adopted to
identify pairs of miRNA and pathway with significant rele-
vance. Fisher’s exact test examines whether the proportion
of target genes (namely, target genes of miRNA) in the gene
group is same to the proportion of target genes in the en-
tire genome. There are two hypotheses: first, whether the
gene belongs to target gene group or not; second, whether
the gene belongs to functional gene group (for example,
group of pathway genes). Fisher’s score was defined as the
probability of at least x genes can be identified in functional
gene group in the K target genes.

N represents the number of total genes in the whole
genome; M represents the number of genes in a functional
genes group; and K represents the number of target genes.
Finally, altered pathways at different statuses were identi-
fied, as well as the miRNAs regulating the corresponding
pathways.

RESULTS

Identification of DEGs

According to the threshold (p-value < 0.01 and |log2
FC| g 0), a total of 505 DEGs (including 205 up-regulated
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Table 2. Pathway enrichment analysis result for the DEGs between healthy obese, steatosis, NASH, and controls.

Group (term) Count p-value DEGs

Obese
hsa00410: beta-alanine metabolism 5 0.001 CNDP1, EHHADH, ALDH2, HIBCH, DPYD
hsa00310: lysine degradation 5 0.017 EHHADH, WHSC1L1, ALDH2, ACAT1, BBOX1
hsa05120: epithelial cell signaling in pylori infection 6 0.010 EGFR, CDC42, IL8, ATP6V0D2, ATP6V0B, ATP6V1F
hsa00640: propanoate metabolism 4 0.036 EHHADH, ALDH2, HIBCH, ACAT1
hsa05110: Vibrio cholerae infection 5 0.039 PRKCA, ATP6V0D2, ATP6V0B, SEC61G, ATP6V1F
hsa05130: pathogenic Escherichia coli infection 5 0.041 PRKCA, CDC42, TUBA8, KRT18, ARPC4
hsa00380: tryptophan metabolism 4 0.063 EHHADH, ALDH2, CAT, ACAT1
hsa04666: FcγR-mediated phagocytosis 6 0.066 PRKCA, DNM3, CDC42, WASF3, ARPC4, CRK
hsa05219: Bladder cancer 4 0.071 EGFR, CCND1, IL8, MYC
hsa00280: valine, leucine and isoleucine degradation 4 0.079 EHHADH, ALDH2, HIBCH, ACAT1
hsa00510: N-glycan biosynthesis 4 0.088 MGAT5B, DPM2, DPAGT1, ALG14
hsa04120: ubiquitin mediated proteolysis 7 0.094 UBE2N, CBLC, UBE2I, FBXO4, ITCH,

UBE2L3, UBE2B
Steatosis

hsa03010: ribosome 27 0.001 RPL17, RPL36A, RPL14, RPL15, RPL27A,
RPS27L, RPS25, RPS27, RPL30, MRPL13…

hsa04120: ubiquitin mediated proteolysis 14 0.004 UBE2A, UBA7, SKP1, UBE2B, RBX1, UBE2N,
CUL2, UBE2D2, CUL7, UBA2…

hsa03050: proteasome 7 0.012 PSMA1, PSMC6, PSMD12, PSMA6, PSMA4,
POMP, PSMD6

hsa05211: renal cell carcinoma 8 0.026 CDC42, CUL2, PAK2, VEGFA, RAP1B,
TCEB1, CRK, RBX1

hsa04510: focal adhesion 15 0.041 PRKCA, PARVG, EGFR, FLT4, MYL12B,
MYL12A, PPP1CB, KDR, CDC42, VEGFA

hsa04115: p53 signaling pathway 7 0.063 CCNB3, ZMAT3, TSC2, MDM2, RRM2B,
CCNG1, GADD45A

hsa04144: endocytosis 13 0.083 EGFR, PLD2, RET, TSG101, ADRBK1,
KDR, CDC42…

hsa00563: (GPI)-anchor biosynthesis 4 0.084 PIGG, PIGX, PIGW, PIGA

hsa03018: RNA degradation 6 0.088 WDR61, EXOSC4, LSM6, LSM3, CNOT7, LSM1

NASH
hsa03010: ribosome 18 0.001 RPL36A, RPL15, RPS8, RPS7, RPL18A, RPS3A,

RPL22, RPL9, FAU, RPS13…

hsa04610: complement and coagulation cascades 11 0.001 C8B, FGG, C9, MASP2, C6, C5, TFPI,
SERPINC1, C4BPB, C4BPA…

hsa00140: steroid hormone biosynthesis 7 0.018 AKR1C2, HSD17B2, CYP7A1, SRD5A1,
SRD5A2, UGT2A3, AKR1C1

hsa04666: FcγR-mediated phagocytosis 10 0.030 PLCG1, LIMK1, CFL2, PIP5K1C, ARPC5,
INPP5D, VAV2, PRKCE, PRKCD, SYK

hsa04930: type II diabetes mellitus 6 0.064 SOCS2, PKLR, IKBKB, PRKCE, INSR, PRKCD
hsa04210: apoptosis 5 0.075 GTF2E2, TAF7, GTF2A2, TAF9B, GTF2B
hsa05020: prion diseases 5 0.075 NCAM2, C8B, C9, C6, C5
hsa00910: nitrogen metabolism 4 0.087 CTH, CA14, CA12, HAL
hsa03320: PPAR signaling pathway 7 0.097 ME1, LPL, PLIN1, CYP7A1, SCD, FADS2, FABP4

DEGs: differentially expressed genes. NASH: nonalcoholic steatohepatitis.
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and 300 down-regulated DEGs), 814 DEGs (including 283
up-regulated and 531 down-regulated DEGs), and 783
DEGs (including 392 up-regulated and 391 down-regulat-
ed DEGs) were identified between healthy obese and con-
trol samples (H vs. C), between steatosis and control
samples (S vs. C), and between NASH and control sam-
ples (N vs. C), respectively.

Pathway enrichment analysis for DEGs

In H vs. C contrast group, DEGs were significantly en-
riched in 6 KEGG pathways, such as FcγR-mediated
phagocytosis (PRKCA, CDC42, etc.), ubiquitin mediated
proteolysis (UBE2N, UBE2B, etc.), and so on. In S vs. C
contrast group, DEGs were markedly enriched in ribos-
ome (RPL36A, RPL14, etc.), ubiquitin mediated proteoly-
sis (UBE2A, UBA7, etc.), focal adhesion (PRKCA, EGFR,
CDC42, VEGFA, etc.), and so on. Meanwhile, in N vs. C
contrast group, DEGs were significantly enriched in ri-
bosome (RPL36A, RPL15, etc.), FcγR-mediated phagocy-
tosis (PRKCE, PRKCD, etc.), and so on (Table 2).

Alterations of pathways

After combining the above three sets of pathways en-
riched by DEGs, a total of 27 significant pathways were ob-

tained. Taking normal controls as the baseline (Figure 1),
alteration score was determined for each pathway. On the

Figure 2.Figure 2.Figure 2.Figure 2.Figure 2. The protein-protein interaction network for the differentially ex-
pressed genes between healthy obese samples and normal controls.

Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. The line chart displaying the deviation of the 27 pathways at three statuses. Blue line: healthy obese; red line: steatosis; green line: NASH. The 27
biological pathways are in X-axis and alteration score of the pathway is in Y-axis. NASH: nonalcoholic steatohepatitis.
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Figure 3.Figure 3.Figure 3.Figure 3.Figure 3. The protein-protein interaction network for the differentially ex-
pressed genes between steatosis samples and normal controls.

whole, all of the 27 pathways were gradually deviated from
the baseline along with the change of normal-obesity-stea-
tosis-NASH. Some pathways showed significant deviation
from the baseline and obvious changes along with the
change of normal-obesity-steatosis-NASH, such as ribos-
ome, ubiquitin mediated proteolysis, focal adhesion and
Fc�R-mediated phagocytosis.

PPI networks analysis

The PPI network for DEGs in H vs. C contrast group
consisted of 254 genes and 551 interactions (Figure 2), and

Figure 4. Figure 4. Figure 4. Figure 4. Figure 4. The protein-protein interaction network for the differentially ex-
pressed genes between NASH samples and normal controls. NASH: nonal-
coholic steatohepatitis.

some genes had high degrees, such as EGFR (degree = 49)
and PRKCA (degree = 40) (Table 3). Besides, in the net-
work for DEGs in S vs. C contrast group, there were 464
genes and 1,059 interactions (Figure 3), and some genes
had high degrees, such as EGFR (degree = 62), PRKCA
(degree = 47) (Table 3). Meanwhile, in these two net-
works, PRKCA interacted with numerous genes, such as
EGFR and CDC42. Furthermore, the network for DEGs
in N vs. C contrast group contained 471 genes and 995
interactions (Figure 4), and some genes had higher de-
grees, such as PRKCD (degree = 51) and PLCG1 (degree =
48) (Table 3). Additionally, along with the change of obesi-

Table 3. The top 10 genes in the PPI networks of obese, steatosis, and NASH.

Group Gene Degree Gene Degree

Obese EGFR 49 CDC42 22
PRKCA 40 KRT18 19
PTK2B 29 EIF2AK2 18
CRK 26 MYC 18
UBE2I 24 ATXN1 17

Steatosis EGFR 62 PTK2B 29
PRKCA 47 KDR 27
CRK 36 CDC42 26
MDM2 31 PPP2CA 23
HDAC1 30 PAK2 23

NASH PRKCD 51 HDAC1 23
PLCG1 48 PPP2CA 23
SYK 41 MET 20
INSR 34 KRT18 20
KDR 27 INPP5D 20

PPI: protein-protein interaction. NASH: nonalcoholic steatohepatitis.



Wang R, et al. ,     2016; 15 (2): 190-199196

Table 5. The top 10 miRNA-target-pathway with the highest significant relevance.

miRNA KEGG pathway p-value DEGs

hsa-miR-7 hsa04144: endocytosis 0.001555 EGFR
hsa-miR-34c-5p hsa05219: bladder cancer 0.001578 MYC
hsa-miR-106b hsa04120: ubiquitin mediated proteolysis 0.001630 ITCH
hsa-miR-29b hsa05211: renal cell carcinoma 0.001702 CDC42, VEGFA
hsa-miR-7 hsa05219: bladder cancer 0.001719 EGFR
hsa-miR-126 hsa04510: focal adhesion 0.001878 VEGFA, CRK
hsa-miR-330-3p hsa04510: focal adhesion 0.001941 VEGFA, CDC42
hsa-miR-15a hsa05219: bladder cancer 0.002370 CCND1
hsa-miR-29a hsa04144: endocytosis 0.002834 CDC42, RET
hsa-miR-34a hsa05219: bladder cancer 0.003064 CCND1

miRNA: microRNA. KEGG: Kyoto Encyclopedia of Genes and Genomes. DEGs: differentially expressed genes. The genes enriched in pathways were regula-
ted by the corresponding miRNAs.

ty-steatosis-NASH, the average degrees of PPI network
decreased, ASPLs of PPI network increased, CCs and TCs
of PPI network exhibited small declines (Table 4).

miRNAs related to significant pathways

Some miRNAs were identified to regulate DEGs en-
riched in a set of significant pathways. For instance, hsa-
miR-126 and hsa-miR-330-3p regulated focal adhesion via
targeting VEGFA and CDC42 (Table 5).

DISCUSSION

In the present study, gene expression profiles of healthy
obese, steatosis and NASH samples were compared to
healthy controls, and a total of 505, 814 and 784 DEGs were
identified, respectively. According to the pathway deviation
analysis, obvious changes of pathways enriched by DEGs
along with the change of normal-obesity-steatosis-NASH
were observed, such as ribosome (RPL36A, RPL14, etc.),
ubiquitin mediated proteolysis (UBE2A, UBE2B, etc.), fo-
cal adhesion (PRKCA, EGFR, CDC42, VEGFA, etc.), and
FcγR-mediated phagocytosis (PRKCA, CDC42, etc.). Re-
portedly, obesity is a risk factors of NAFLD,7 and NASH is
always developed from steatosis. Therefore, it’s supposed
that obesity develops into steatosis, steatosis develops into

NASH, and these developments are associated with the de-
viation of the 27 pathways.

Among these pathways, ubiquitin mediated proteolysis
and ribosome were both associated with protein metabo-
lism. In the liver with non-alcoholic steatosis or steato-
hepatitis, inactivation of the ubiquitin-proteasome
pathway mediates cell death caused by oxidative stress.27

In this study, UBE2A (ubiquitin-conjugating enzyme E2A)
and UBA7 (ubiquitin-like modifier activating enzyme 7)
were demonstrated to take part in ubiquitin mediated pro-
teolysis. Thus, UBE2A and UBA7 might be involved in
NAFLD through ubiquitin mediated proteolysis.

There is no relevant evidence showing ribosome is as-
sociated with NASH or NAFLD, while ribosome is
closely related to apoptosis,28 which is a pathological fea-
ture of NAFLD and promote the development from sim-
ple steatosis to NASH.29 In the present study, RPL36A
(ribosomal protein L36α) and RPL14 (ribosomal protein
L14) were found to participate in ribosome pathway. In
addition, the expression levels of RPL36A were signifi-
cantly down-regulated in healthy obese samples (log2 FC
= -0.186), steatosis samples (log2 FC = -0.421), and
NASH samples (log2 FC = -0.340), in comparison with
normal controls; the expression levels of RPL14 were sig-
nificantly down-regulated in healthy obese samples (log2
FC = -0.104), steatosis samples (log2 FC = -0.221), and
NASH samples (log2 FC = -0.187), in comparison with
normal controls. The down-regulation of RPL36A and
RPL14 might further promote cell death. Therefore, these
genes might play a role in NAFLD through ribosome
pathway.

Focal adhesion is crucial in liver disease, because the
stage of simple steatosis progressing over steatohepatitis to
fibrosing steatohepatitis is characterised by adhesion of
leucocytes to the sinusoidal endothelium.30 In this study,
PRKCA (protein kinase C α), EGFR (epidermal growth
factor receptor), CDC42 (cell division cycle 42) and VEGFA

Table 4. Topological properties of the 3 networks.

Network features Obese Steatosis NASH

Degree 4.338 4.267 3.869
CC 0.059 0.052 0.048
ASPL 3.881 4.251 4.419
TC 0.265 0.256 0.254

CC: clustering coefficient. ASPL: average shortest path length. TC: topolo-
gical coefficient. NASH: nonalcoholic steatohepatitis. The value is a mean
for all genes in each network.
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(vascular endothelial growth factor A) were significantly
enriched in focal adhesion. The expression levels of
PRKCA were significantly up-regulated in healthy obese
samples (log2 FC = 0.210), steatosis samples (log2 FC =
0.253), and NASH samples (log2 FC = 0.063), in compari-
son with normal controls. In the PPI networks for DEGs
of H vs. C contrast group and S vs. C contrast group, PRK-
CA had high degrees and interacted with EGFR and
CDC42. The study of  Yang, et al. has shown that EGFs can
stimulate proliferation of hepatic stellate cells,31 which is
the primary effector cell, orchestrating the deposition of
extracellular matrix (ECM) in fibrotic liver.32 In this
study, the expression levels of EGFR were significantly
up-regulated in healthy obese samples (log2 FC = 0.224),
steatosis samples (log2 FC = 0.243), and NASH samples
(log2 FC = 0.059), in comparison with normal controls.
Besides, CDC42 participates in the activation of saturated
fatty acid-induced c-Jun N-terminal kinase (JNK) in
hepatocytes,33 which is evident in NASH patients.34,35

In addition, VEGFs play an important role in the develop-
ment of liver fibrosis and hepatocarcinogenesis in NASH,
coordinating with leptin-mediated neovascularization.36

In this study, the expression levels of VEGFA were sig-
nificantly up-regulated in healthy obese, steatosis, and
NASH samples, in comparison with normal controls.
This result was consistent with the study (at serum level)
of Coulon, et al.37 Hence, PRKCA, EGFR, CDC42, and
VEGFA might participate in the development of NAFLD
through focal adhesion.

In the progression of  NAFLD, phagocytic dysfunction
is aggravated.38 In this study, DEGs PRKCA, CDC42,
PRKCE and PRKCD were enriched in FcγR-mediated
phagocytosis. It should be noted that PRKCA, PRKCE
(protein kinase C ε), and PRKCD (protein kinase C δ) be-
long to the same protein family, and thus share similar bio-
functions in liver.39 As discussed above, PRKCA, CDC42,
PRKCE, and PRKCD might participate in the development
of NAFLD through FcγR-mediated phagocytosis.

In our study, it’s also discovered that CDC42 and VEG-
FA were regulated by hsa-miR-330-3p, and VEGFA was
regulated by hsa-miR-126, in the pathway of focal adhe-
sion. Reportedly, the expression of hsa-miR-330-3p is al-
tered in NAFLD,40 and miR-126 is down-regulated in
type 2 diabetes,41 which is commonly associated with
NASH.42 Also, miR-126 can target insulin receptor sub-
strate-1 (IRS-1),43 which is correlated with the severity of
liver damage in patients with NAFLD.44 Thereby, hsa-
miR-330-3p and hsa-miR-126 might play pivotal roles in
the development of NAFLD via regulating focal adhesion
through VEGFA or CDC42.

In summary, a number of DEGs (including PRKCA,
EGFR, CDC42, VEGFA, etc.), disturbed pathways (in-
cluding ribosome, ubiquitin mediated proteolysis, FcγR-

mediated phagocytosis, focal adhesion, etc.) and several
miRNAs (including hsa-miR-330-3p, hsa-miR-126, etc.)
were revealed in the development of NAFLD. The results
of this study might be conducive to the further under-
standing of NAFLD mechanism, and provide a theoretical
basis for further experimental researches and clinical prac-
tices. For example, the key genes and miRNAs identified
in this study might serve as therapeutic targets for the
treatment of NAFLD after generating pre-clinical evi-
dences.
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