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INTRODUCTION

Papaya is an important crop fruit for Mexico due to its
nutritional value and, its economical value as an export crop.
In Mexico, many of the commercial orchards are established
in soils with low fertility. Thus, producers require to apply

P-fertilizers to improve plant productivity. Nutrient avail-
ability is also limiting because soil fertility is low or some
elements such as phosphorus is fixed by soil colloids.53 In
that case, plant nutrition depends on factors such as organic
exudates to modify soil pH, kind and age of root system to
improve the nutrimental absorption, enzyme releasing, and
others nutrimental uptake mechanisms.16,26,45,53 Microbial
activity is particularly important under limiting soil fertility
so that they can release the necessary nutrients to plants.
Rhizospheric beneficial microorganisms play an important
role on plant nutrition.9,24 Plant growth promoting rhizobac-
teria and arbuscular mycorrhizal fungi (AMF) could be ap-

ABSTRACT. Arbuscular mycorrhizal fungi (AMF) are able to in-
crease root enzymatic activity of acid and alkaline phosphatases.
However, the role of AMF on phosphatase activity has not been re-
ported in papaya (Carica papaya L.), which is frequently establis-
hed at places with soil phosphorus (P) deficiencies. The goals of this
research were to determine the effect of Glomus claroideum (Gc),
and plant growth promoting rhizobacterium Azospirillum brasilense
strain VS7 [Ab]) on root phosphatase activity and seedling growth
of Carica papaya L. cv. Red Maradol under low P conditions. There
were four treatments-colonization with: 1) Gc, 2) Ab, 3) Gc+Ab,
and 4) non-inoculated seedlings. Plants were established in a coarse
sand:sandy loam substrate under P-limitation (11µg P ml-1), su-
pplied with a modified Long Ashton Nutrient Solution. Seedling
growth was severely reduced by low P. Gc+Ab inoculated plants
had greater total dry matter and leaf area than non-colonized plants.
Gc-inoculated plants had greater leaf area than non-colonized
plants. Treatments did not differ in leaf area ratio, specific leaf area
and, total chlorophyll content. There was a non-significant effect on
stem relative growth rate with Gc and Gc+Ab plants. Mycorrhizal
colonization enhanced the bacterial population 3.4-fold in the
Gc+Ab treatment compared with the population quantified in Ab
treatment. Soluble and extractable root acid phosphatase activity
(RAPA) was higher in Gc inoculated plants. We discussed on the
possible relation among both inoculated microorganisms and also
with the P-limitation which plants were established.

Key words: Plant growth promoting microorganisms, microbial in-
teraction, P-limitation

RESUMEN. Algunas investigaciones han demostrado que los hon-
gos micorrízicos arbusculares pueden modificar la actividad enzi-
mática de la raíz (fosfatasa ácida o alcalina), sin embargo, ésta se
desconoce en cultivos como papaya, la cual es frecuentemente esta-
blecida en suelos con problemas de limitación por fósforo. El objeti-
vo del trabajo consistió en evaluar el efecto de la inoculación de
Glomus claroideum (Gc) y de la cepa Azospirillum brasilense VS-7
(Ab) sobre el crecimiento y actividad enzimática de la fosfatasa áci-
da en raíz de Carica papaya cv. Maradol roja establecida bajo con-
diciones de limitación por fósforo. Se consideraron cuatro trata-
mientos 1) Inoculación con Gc, 2) Inoculación con Ab, 3) inocula-
ción con Gc+Ab y, 4) testigo. Las plantas fueron trasplantadas en un
sustrato que consistió de la mezcla de arena y suelo limo-arenoso, a
la cual se aplicó solución nutritiva de Long Ashton con 11 mg de P
ml-1. El crecimiento de las plantas fue limitado por la deficiencia de
P. Las plantas inoculadas con ambos microorganismos presentaron
mayor materia seca y área foliar en comparación con plantas testigo.
Las plantas inoculadas con Gc mostraron mayor área foliar que las
plantas testigo. No se observaron diferencias significativas en la re-
lación área foliar, área foliar específica y contenido de clorofila. No
se observaron diferencias significativas en la tasa de crecimiento del
tallo entre las plantas inoculadas con Gc y Gc+Ab. Las plantas con
Gc incrementaron 3.4 veces la población de las bacterias en compa-
ración con la población cuantificada en las plantas inoculadas con
Ab. La actividad enzimática de la fosfatasa ácida en raíz, tanto solu-
ble como extractable, fue más alta en las plantas inoculadas con Gc.
Se hace la discusión de las posibles interacciones que se tuvieron
entre los microorganismos inoculados y la condición de limitación
de P en las que fueron establecidas las plantas.

Palabras clave: Microorganismos promotores del crecimiento ve-
getal, interacción microbiana, limitación por fósforo.
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plied in nursery plant management to improve vigor, nutri-
tion and plant quality.1,35,40 The establishment of AMF in
root allows the improving of nutrimental uptake by plants.33

Mycorrhizal activity influences on soil pH modifications7

and beneficial bacteria populations4,39 which also contribute
in plant growth promotion.9,10 Benefits of rhizospheric mi-
croorganisms to plant growth, nutrimental uptake, gas ex-
change, rooting enhancement of cuttings and, alleviation of
stress after transplanting and drought stress have been re-
ported.14,20,21,29,30,40,47,49 Reported phosphorus uptake mecha-
nisms of plants include greater enzymatic excretion through
the root systems which allow the enhancing of P-plant nutri-
tion.41 With phosphorus uptake, the establishment of AMF
in root system produce changes related with the enzymatic
activity of either acid or alkaline phosphatases25,37,50 which
contributes to greater soil nutrimental availability. The aims
of this research were to determine the effect of Glomus clar-
oideum and Azospirillum brasilense VS7 on root acid phos-
phatase activity and seedling growth of Carica papaya L. cv
Red Maradol under low P conditions.

MATERIAL AND METHODS

Seed management. Commercial and certified seeds of
Carica papaya cv. red Maradol were superficially disin-
fested with alcohol 70% (30s) and chloramine T 2% (1
min) and after they were sowed in containers containing
steam-sterilized sand. Fifteen days-old seedlings were
transplanted to plastic pots of 2 liters, containing a coarse
sand:sandy loam as growth substrate whose chemical fea-
tures were (µg g-1) 0.9 NO3-N, 2.1 NH4-N, 1.5 P, 10.7 K,
pH 7.7, EC 0.17 and textural analysis 85% sand, 10% clay
and 5% silt. At this moment, plants were also inoculated,
according to their treatments, with the two beneficial mi-
croorganisms.

Microbial strains. Seedlings were inoculated with Azospir-
illum brasilense VS-7 (Mexican strain isolated from Valle
de Santiago, Guanajuato, Mexico and supplied it by the
Chemistry Laboratory, UNAM) and Glomus claroideum
Schenck and Smith (isolated identified from Glomus con-
sortium collected from Zacatecas, Mexico.19) The bacterial
inoculum was prepared on solid nutrient agar media incu-
bated at 28°C. The bacterial colonies were rinsed with ster-
ile distilled water. Seedlings were inoculated with three
milliliters of the bacterial inoculum suspension. The bacte-
rial population applied on root system was 14.6 UFC x 109
ml-1 plant-1.

Spores of Glomus claroideum were collected from a
pure culture in sand and superficially disinfested according
to Becard and Fortin technique,12 and then 500 spores per
plant were inoculated applying them directly to the root
system of each seedling. Simultaneously, the spore viabili-

ty percentage was determined by the tetrazolium bromide
technique43 which was 80.5%.

Cultural conditions. After 24 h to the transplanting and
inoculation, the plants were fertilized and weekly watered
with 200 ml of Long Ashton Nutrient Solution (µg ml-1):
175.9 N, 156.2 K, 160.2 Ca, 98.4 S, 11.7 Na, 5.4 Cl, 5.0
Fe-quelate sequestrene, 0.54 Mn, 0.54 B, 0.10 Cu, 0.06 Zn
and 0.006 Mo. Phosphorus was applied at 11 µg P ml-1 for
all the plants.

Plants were grown in a glasshouse for eight weeks under
mean minimum/maximum temperature 16.8/34.8°C and
mean minimum/maximum relative humidity 47.5/100%
(May-July, 1999) determined by Hobo Data Logger Onset
S/N 185122. Morphological parameters such as height, stem
diameter and leaf number were evaluated. Total chlorophyll
content was evaluated with the Spadmeter model Spad 502,
Minolta Corp., using a standard curve for chlorophyll from
previous destructively harvested papaya plants. The regres-
sion equation model estimated was y = -18.695 + 6.0508 (x)
which had a high correlation (r2 = 97.1) and it was used to
determine total chlorophyll content in leaves. Root acid
phosphatase (soluble and extractable) activity was deter-
mined at 55 days after transplanting. It was estimated ac-
cording to the modified p-nitrophenylphosphate method.55

Briefly, 0.1 g of roots were gently washed with sterile deion-
ized water and set in micrutubes added with 450 µl of a buff-
er solution (pH 5.5). Samples of roots were set in the buffer
solution in order to determine the soluble enzymatic activity
and also, another samples were powdered with a micropestle
to evaluate the extractable enzyme. Enzymatic activity was
measured by adding 150 µl of p-nitrophenylphosphate (3
mM) and, microtubes were centrifuged at 10,000 rpm, 10
minutes and incubated at 37°C, 45 minutes. After incuba-
tion, 150 ml of Cl2Ca (5M) and 400 µl of KOH (5M) were
added, then samples were centrifuged at 10,000 rpm during
10 minutes. Standard curve was made by using p-nitrophe-
nol (7 mM). Absorbance lectures (420 nm) were taken with
UV HP-chemistation computing system.

 At plant harvest stage other growth parameters included
dry mass (shoot and root), leaf area ratio (LAR=total leaf
area/ total plant dry weight), specific leaf area (SLA=total
leaf area/dry weight of leaves), and relative stem growth
rate [3.1416 (stem diameter/2)2 (eight/days).34] Bacterial
establishment on surface root were evaluated using the se-
rial dilutions technique on yeast extract and red Congo
Azospirillum specific medium in petri dishes. The frequen-
cy of total AM colonization was determined through the
root staining48 and using the method of Biermann and Lin-
derman.15

Experimental design and treatment. The experiment
consisted in a completely randomly design with four treat-
ments and 25 replications per treatment. Thirteen replica-
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tions were used in growth analysis and the remained twelve
plants were used for root phosphatase analysis and, mycor-
rhizal and bacteria analysis, using four plants with three
replications in each sampling time (n=12). Five plants were
used for plant growth evaluation and for determining the
chlorophyll content considering two leaves per plant
(n=10). The treatments consisted on 1) inoculation of
spores of Glomus claroideum (Gc), 2) inoculation with
Azospirillum brasilense VS7 (Ab), 3) inoculation with
Gc+Ab, and 4) non-inoculated seedlings, all they estab-
lished at 11µg P ml-1. Data were analyzed by the analysis
of variance procedure52 and a test (α=0.05%) was used for
the means separation.

RESULTS

Plant growth response. Plant growth was severely re-
duced by P stress. After 15 days, the Ab inoculation pro-
duced decreases on relative stem growth rate but it was ob-
served that dual microbial inoculation promoted higher
values in this parameter as well as total dry matter (Table
1); nevertheless, this benefit seems to be associated by the
presence Gc which increased significantly the leaf area in
comparison with Ab inoculation and non-inoculated plants
(Table 1). Significant differences were not observed by the
microbial inoculation on LAR and SLA. However, AMF
inoculation showed the highest values but in the dual inoc-
ulation, this effect was notoriously diminished (Table 1)
even when it was compared with control plants.

Effects on root acid phosphatase activity (RAPA). Gc-
inoculated plants showed the highest values of soluble and
extractable RAPA (Figure 1a-b). This effect was signifi-
cant (a=0.01) in comparison with treatments with the dual
inoculation and control plants. Azospirillum inoculation re-
duced the soluble RAPA in comparison with mycorrhizal
plants (Figure 1b).

Effects on chlorophyll. Significant differences between
total chlorophyll content were not observed in all treat-
ments (data non shown) but, the chlorophyll content was

higher (>300 mmoles m-2) in all the treatments inoculated
with the microorganisms in comparison with control
plants.

Microbial colonization. At 15 days, the establishment
of Ab was affected by the inoculation of AM fungus. The
plants solely inoculated with Ab had a high population

Table 1.  Effect of the inoculation of arbuscular mycorrhizal fungus and plant growth promoting rhizobacterium on yield dry matter and morphological pa-
rameters of Carica papaya cv. Red Maradol established under low P conditions, at 55 days after transplanting.

Treatment Total dry matter g Relative stem growth Leaf area cm2 LAR cm2 g-1 SLA m2g g-1

rate cm3 day-1

Control 0.82 b 0.024 ab 71.7 b 93.2 a 307.7 a
Glomus claroides 1.07 ab 0.035 ab 117.7 a 143.6 a 421.4 a
Azospirillum brasilense  0.70 b 0.020 b 65.2 b 107.1 a 287.4 a
G. claroides + A. brasilense 1.40 a 0.039 a 115.8 a 85.9 a  279.4 a

LAR=Leaf area ratio; SLA=Specific leaf area. Means followed by the same letter are not significant (Tukey α=0.05). n=13.

Figure 1.  Soluble (A) and extractable (B) root acid phosphatase activity
of Carica papaya L. cv. Red Maradol plants grown under low P condi-
tions, after 55 days. Gc=Glomus claroides; Ab=Azospirillum brasilense.
PNP=p-nitrophenol released. Identical letters on the columns in each
graph are not significantly different (Tukey a=0.05). n=12.
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(> 200 x 107 CFU g-1 of dry root), but when Gc was inocu-
lated, the bacterial population significantly decreased at 70
x 107 UFC g-1 (Table 2). In contrast, AM colonization with
both microorganisms was higher than the solely fungus in-
oculation, although mainly apresoria and extramatrical
mycelium were observed in both treatments. At 55 days,
AMF colonization was non-significantly affected by Ab
(Table 2) but, the bacterial colonization increased when
dual inoculation was done in comparison with the first
sampling. AMF-colonization was not observed in control
and Ab-inoculated plants.

DISCUSSION

Carica papaya has been considered as a dependent plant
of mycorrhizal inoculation,36 however little is known about
the fungal interaction with plant growth promoting rhizobac-
teria (PGPR) fruit crops. Our results was less significant due
to the source of inoculum so that mycorrhizal spores require
specific conditions for germinating and establishing root col-
onization. Another sources of inoculum such as soil with hy-
phae, spores and colonized roots have been successfully
used, showing earliest beneficial effects,3,22,38,57 that kind of
inoculum might make sure off the mycorrhizal effective-
ness. Nevertheless, plant growth was mainly dependent on
mycorrhizal condition and the solely inoculation of Ab pro-
duced negative effects plant dry weight and leaf area. There
are some reports about the synergistic effect of AMF and
PGPR5,5,6,38 however, some negative effects could be ob-
tained54 due to the physiological bacteria activity could
show inhibition to the fungal establishment and its effective-
ness.46,57 Our results indicate that A. brasilense combined
with G. claroideum produced some benefits on total dry
matter and leaf area (Table 1) showing a synergistic effect as
it has been mentioned by Bashan and Levanony.8 In that
sense, the knowledge of the possible interaction between
AMF and PGPR must be measured so that it could affect the

beneficial effects of both microorganisms. G. claroideum in-
oculation stimulated plant growth in comparison with the
control. The negative response of bacterial inoculation could
be associated with the apparently specificity of this bacteria
so that it are often associated with C4 and some C3 plants8

and the inoculation success could be related with that speci-
ficity57 even it could show inconsistency in plant response to
inoculation.11

In some studies, the benefits of AMF on RAPA are attrib-
uted at specific soil conditions57,38 and plant genotype.28 Un-
der our plant growth conditions, the soluble and extractable
RAPA significantly increased by the presence of G. claroi-
deum (Figure 1). P-limitation seems to induce secretion of
soluble RAPA as a natural plant response, 27,28,61 however
dual inoculation showed a contrary effect possibly to the mi-
crobial compatibility and this could represent a specific sink
of energy from plant before expressing their beneficial ef-
fect, particularly by G. claroideum. The extractable RAPA
was increased by effect of Gc and Ab, it might suggest that
plant could have required more P in the microbial symbiotic
phase in order to supply the C-sources required by both mi-
croorganisms in order to satisfy their nutrition and beneficial
activity. In that way, AMF have the ability to stimulate the
RAPA23,38,50,56 and that response was highly significant un-
der P-limitations for plant growth. These benefits let the
plant to express high relative stem growth rate. Microbial in-
oculated plants did not show nutrimental deficiencies symp-
toms and the sufficiency nitrogen application in the nutrient
solution could be related with the non significant effects on
total chlorophyll content obtained; however, inoculated
plants with both microorganisms had higher chlorophyll
content. In this case, AMF activity could have participated
on the N uptake even under P-limitation which favored in-
creases in chlorophyll. It represents benefits to the plant be-
cause it maintains certain nutrimental balance in plants
grown under these specific culture conditions. Although a
some significant benefits by AMF were observed on plant

Table 2.  Effect of the inoculation of arbuscular mycorrhizal fungus and plant growth promoting rhizobacterium on the bacterial population and mycorrhizal
colonization of Carica papaya L. cv. Red Maradol established under low P conditions, at two dates after transplanting.

Treatment Mycorrhizal colonization % Bacterial population Mycorrhizal colonization % Bacterial population

CFU x 107 g-1 root fw CFU x 107 g-1 root fw

 15 days  55 days
Control 0.0 b 0.0 c 0.0 b 0.0 c
Glomus claroides 2.2* b 0.0 c 12.3 a 0.0 c
Azospirillum brasilense  0.0 b 200.0 a 0.0 b 45.0 b
G. claroides + A. brasilense 4.2* a 70.0 b 3.9 ab 151 a

fw=Fresh weight; *Appresoria basically were observed. Means followed by the same letter are not significant (Tukey a=0.05). n=12.
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growth, it could be related with the low root colonization
percentage observed. The low mycorrhizal colonization
could have caused as a result of P-limitation in soil. It is
know that plants under P-starvation produce a high ethylene
releasing2,18,32 as a consequence of adventitious root forma-
tion.51 This ethylene could have not only affected the micro-
bial establishment but also mediated the plant response
through root architecture and morphology modifications.18

Some volatile exudates can promote or inhibit the AMF-col-
onization and internal growth in roots.13 In that sense, the
ethylene as a product of high level of root auxins which
could have acted as indirect delaying agent of AMF and bac-
teria establishment in roots and then, avoid the expression of
their benefits. Boller17 mentioned that ethylene is a plant sig-
nal to activate protective mechanisms against pathogenic
fungi and also on AMF-spore germination60 which are inhib-
ited by the presence of enzymes whose activity produce deg-
radation of fungal wall cell (chitin and b-1,3-glucane) and
this effect could have also delayed the AMF-establishment
in roots exposed under P-limitation. However, this hypothe-
sis needs to be studied and confirmed.

The beneficial effects of microbial inoculation on plant
growth was observed at 55 days and it is possible that more
significant benefits might be observed a few days later. It is
emphasized according to the observed AMF-establishment
in root system. The incipient effects of both microorganisms
on plant growth might be related with the competence of
both symbionts by C-compounds58 and, it could have pro-
duced certain disequilibria on plant physiology so that the
plant had not only to satisfy its physiological requirements
but also the energy required by both symbiotic microorgan-
isms.5 However, utilizing dual microbial inoculation (AMF
and bacteria) generally show synergistic effects31,38 and
some studies have had negative effects on plant growth and
mycorrhizal effectiveness.46 In some cases Azospirillum
bacteria besides of having the ability of fixing atmospheric
nitrogen, they are able to produce some antibiotic effects on
fungal growth,9,24 this effect could affect to AMF. Neverthe-
less, bacterial population seemed to be stimulated by AMF
so that it has been discussed that mycorrhizal fungi could
modify its environment in order to induce a selective influ-
ence on composition and density of rhizobacteria.31,42,44 Fur-
ther studies must be conducted in order to know the possible
physiological effects of PGPR on AMF effectiveness not
only under substrates with low nutrimental fertility but also
under optimum conditions to plant growth.
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