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RESUMEN. La regulación de la inflamación es un proceso fisiopatológico 
complejo que depende de la producción de lípidos oxigenados derivados 
de los ácidos grasos poliinsaturados esenciales, como el omega-3 y 
el omega-6, entre los que se encuentran las lipoxinas, resolvinas y 
protectinas, denominados mediadores lipídicos pro-resolvedores de la 
inflamación (SPM, del inglés specialized pro-resolving lipid mediators). 
La actividad de éstos se asocia con el control de procesos respiratorios 
infecciosos al modular la producción de citocinas proinflamatorias, 
evitar el daño por necrosis asociado a la inflamación, disminuir cargas 
microbianas y promover la regeneración de los tejidos. En este trabajo 
revisamos los aspectos bioquímicos, inmunológicos y fisiopatológicos de 
los SPM en la regulación de la inflamación en infecciones respiratorias.

Palabras clave: Ácido eicosapentaenoico, ácido docosahexaenoico, 
inflamación, infecciones respiratorias, mediadores lipídicos pro-
resolvedores de la inflamación.

ABSTRACT. The regulation of inflammation is a complex pathophysiological 
process that depends on the production of oxygenated lipid derivatives 
essential polyunsaturated fatty acids, like omega-3 and omega-6, among 
which are the lipoxins resolvins and protectins, called specialized pro-
resolving lipid mediators (SPM). Their activity is associated with the 
control of respiratory infection processes to modulate the production 
of proinflammatory cytokines, avoiding damage due to inflammation-
associated necrosis, reducing microbial loads, and promoting tissue 
remodeling. Therefore, we review some of the biochemical, physiological 
and immunological aspects of SPM in the regulation of inflammation in 
respiratory infections.

Keywords: Eicosapentaenoic acid, docosahexaenoic acid, inflammation, 
respiratory infections, specialized pro-resolving lipid mediators. 
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INTRODUCTION

Polyunsaturated fatty acids (PUFA), such as omega-3, are 
obtained from rich sources of fish, salmon, walnuts and 
flaxseeds, while rich sources of omega-6 include vegetable 
oils from corn, safflower, sunflower, soybean and some 
animal products.1-3

PUFA have been increasingly studied for their involvement 
in the regulation of inflammatory responses, such as the 

production of specialized pro-resolving lipid mediators 
(SPMs). PUFA-derived SPMs such as linoleic acid (C18: Δ2, 
n-6), arachidonic acid (AA, C20: Δ4, n-6), eicosapentaenoic 
acid (EPA, 20:55,8,11,14,17) and docosahexaenoic acid 
(DHA, 22: 64,7,10,13,16,19) are generated from enzymatic 
reactions mediated by lipooxygenases (LOX) and/or 
cyclooxygenases (COX), which include DHA-derived 
protectins and D-series resolvins, EPA-derived E-series 
resolvins, and AA-derived lipoxins, as shown in Figure 1.4-9

In both in vitro and in vivo models, SPMs promote 
bacterial clearance by stimulating the production of 
antimicrobial peptides,7,10 increase the phagocytic activity 
of macrophages11-13 and decrease the production of 
proinflammatory cytokines. In addition, they aid in tissue 
repair, increase host defenses and improve survival.14,15

There is evidence that respiratory infections are 
affected by the patient’s nutritional status, metabolic 
status, medication, complications and the course of the 
pulmonary disease itself,16-22 so achieving a balance between 
the protective and detrimental effects of the immune 
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response may help to reduce morbidity and mortality 
and complications in respiratory infections. Therefore, 
investigating the biochemical, immunological and 
pathophysiological aspects of PUFA and their derivatives 
will help to envision routes, routes of administration and 
nutritional formulations that will help to select strategies to 
eradicate respiratory tract pathogens.

PHYSIOLOGICAL ROLE OF PMS

The biological actions of SPMs are mediated by the 
activation of cognate receptors. Signaling is initiated locally 
by specific G protein-coupled receptors (GPCRs) that 
are expressed in different cell types (polymorphonuclear 
cells [PMN], dendritic cells, monocytes, macrophages, 
epithelial cells, fibroblasts, adipocytes, etc.) and promote 
tissue selectivity, exerting their action against extracellular 
responses. Table 1 shows some of the SPM receptors found 
to date, as well as their agonists, antagonists and regulatory 
genes.23-30

ALX was the first receptor identified, it is activated by 
cognate endogenous ligands, including lipoxin A4 (LXA4) 

and resolvins D1 and D3 (RvD1 and RvD3), as well as those 
triggered by aspirin (AT-LXA4, AT-RvD1). RvD1 activates 
the GPR32 receptor that leads to the regulation of several 
micro-RNAs (miRNAs) involved in the orchestration of 
acute inflammation, including miR-(miRNA)146b, miR-
208a and miR-219. This receptor also mediates the 
biological actions of RvD5 in the context of bacterial 
infections, whereby its activation by RvD5 leads to 
enhanced bacterial phagocytosis in human macrophages 
and downregulation of several proinflammatory genes, 
including NF-κB (nuclear factor enhancer of activated 
B-cell kappa light chains) and TNF-α (tumor necrosis 
factor alpha).31,32

The biological effect of resolvins is mediated by ALX, 
FPR2, DRV1, GPCR32, DRV2, GPCR18, ChemR23 or 
ERV1 receptors. RvD1 has been shown to inhibit canonical 
NF-κB (p65/p50) and activation of the non-canonical NF-
κB pathway (p50/p50), leading to inhibition of apoptosis 
and blockade in the production of proinflammatory 
cytokines, reducing PMN transendothelial migration, 
increasing macrophage activity, resulting in clearance of 
apoptotic cells.33 Moreover, RvD1 is able to activate PPARγ 

Figure 1: Biosynthesis of proinflammatory and pro-resolving lipid mediators of inflammation.
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(peroxisome proliferator-activated receptor gamma) and 
suppress NF-κB degradation via p65.34

Some studies have shown that RvD2 activates the DRV2/
GPCR18 receptor controlling phagocyte functions in both 
humans and mice for these receptors, where bacterial 
infections were controlled, improving survival in murine 
and providing organ protection, while these actions were 
diminished in DRV2 knockout (KO) transgenic mice.35

In the case of RvE1, it has been shown to function as 
an agonist for ChemR23/ERV and an antagonist for the 
LTB4 receptor (BLT1) in PMN. Being able to inhibit PMN 
superoxide anion in response to TNF-α or bacterial peptide 
N-formyl-methionyl-leucyl-phenylalanine (f-MetLeuPhe), 
it also stimulates phagocytosis of apoptotic PMN by 
macrophages. While in a rabbit model of periodontitis, 
administration of RvE1 resulted in regeneration of damaged 
tissues, including bone, compared to the use of aspirin or 
steroids such as dexamethasone, it selectively inhibited 
thromboxane, demonstrating its ability to exert anti-
inflammatory effects.26

Evaluations of SPM concentrations in the body are 
performed using high structural resolution techniques such 
as liquid chromatography-mass spectrometry (LC-MS), 
metabololipidomics and UV spectroscopy. Data reported 
to date suggest that the basal levels of SPMs are in the 

submicromolar and nanomolar ranges.23,29,30,34,36,37 Shivakoti 
et al.38 conducted a comparative study of the concentrations 
of some SPMs, where they determined that Australian 
diabetic (DM) patients had higher serum concentrations 
of RvD1, RvD2, RvE1, RvE2 and Mar1 compared to 
patients with tuberculosis (TB) and patients with TB and 
diabetes (TB-DM), indicating that infection promotes an 
imbalance between these lipid mediators, giving rise to 
the consideration of SPM levels as biomarkers of disease.

PMS IN RESPIRATORY DISEASES 
INFECTIOUS AND NON-INFECTIOUS

The human respiratory system is usually divided into upper 
and lower respiratory tract. The upper airways include nasal 
cavities, oral cavity, paranasal sinuses, nasopharynx and 
larynx (which play an important role in particle clearance). 
The lower airways include the trachea, main bronchi, 
terminal bronchi, and respiratory bronchi, as well as the 
alveoli.39,40 Infections can affect both airways, the most 
common being acute rhinopharyngitis (common cold, 
caused by rhinovirus, coronavirus and respiratory syncytial 
virus [RSV], and more rarely by enterovirus, influenza and 
parainfluenza).41-47 In murine models, it has been shown that 
infection by H5N1 influenza virus causes a deregulation in 

Table 1: Receptors, genes and agonists of specialized pro-resolving lipid mediators in various cells.

SPM GPCR Receptors Gen Antagonist Cells

RvD1 ALX, ALX/FPR2, FPR2, DRV1, GPCR32/
ALX

GPCR32 – PMN, DC, monocytes, macrophages, 
macrophages, epithelial cells, fibroblasts

RvD2 DRV2, DRV/GPCR2, DRV2/GPCR18, 
GPCR18

– – NKs, PMNs, lymphocytes, monocytes, 
macrophages, epithelial cells

RvD3 ALX, DRV1 – – Lymphocytes, PMNs, monocytes, 
macrophages

RvD5 DRV1, DRV1/GPCR32 GPCR32 – PMN

AT-RvD1 ALX/FPR2 – – NKs, PMNs, lymphocytes, monocytes, 
macrophages, epithelial cells

RvE1 ChemR23, ERV CMKLR1 BLT1 PMN, monocytes, macrophages

RvE2 ERV1/ChemR23 CMKLR1 BLT1 Monocytes, macrophages

LXA4 ALX, FPR2 FPR2 CB1 NKs, PMNs, lymphocytes, monocytes, 
macrophages, epithelial cells

AT-LXA4 ALX, DRV1/GPCR32 GPCR32 – NKs, PMNs, lymphocytes, monocytes, 
macrophages, epithelial cells

Mar1 – – BLT1 PMNs, lymphocytes, macrophages

SPM = specialized pro-resolving lipid mediators; GPCR = G protein-coupled receptors; RvD1 = resolvin D1; ALX = lipoxin receptor; FPR2 = N-formyl peptide receptor 
2; PMN = polymorphonuclear cells; GPCR32 = G protein-coupled receptor 32; DC = dendritic cells; RvD2 = resolvin D2; DRV2 = resolvin D2 receptor; DRV = resolvin 
D-series resolvin receptor; GPCR2 = G protein-coupled receptor 2; GPCR18 = G protein-coupled receptor 18; NK = natural killer cells; RvD3 = resolvin D3; DRV1 
= resolvin D1 receptor; RvD5 = resolvin D5; AT-RvD1 = aspirin-triggered resolvin D1; RvE1 = resolvin E1; ERV = E-series resolvin receptor; CMKLR1: chemerin 
chemokine-like receptor 1; RvE2 = resolvin E2; ERV1 = resolvin E1 receptor; LXA4 = lipoxin A4; CB1 = cannabinoid receptor type 1; AT-LXA4 = aspirin-triggered lipoxin 
A4; Mar1 = maresin 1.
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the expression and signaling of PMS, such as lipoxins,48 while 
exogenous administration of PD1 inhibits infection by this 
virus, improving survival and lung function.49 On the other 
hand, Ramón et al.50 demonstrated a coadjuvant effect 
with the administration of 17(S)-hydroxydocosahexaenoic 
acid (17-HDHA) after vaccination against influenza, by 
significantly increasing the levels of anti-H1N1 antibodies 
in serum, as well as the number of B cells in murine bone 
marrow.

Other frequent infections are pharyngotonsillitis 
(inflammation of the oropharyngeal membranes and 
palatine tonsils, commonly caused by adenovirus, 
parainfluenza, Epstein-Barr virus, Coxsackievirus and group 
A β-hemolytic Streptococcus),43,44,51-53 and rhinosinusitis 
(inflammation of the mucosa lining the paranasal sinuses, 
caused by Haemophilus influenzae, Staphylococcus 
aureus, Staphylococcus pyogenes, Bacteroides sp. and 
Fusobacterium sp.).51,54,55 In a model of infection with H. 
influenzae, administration of AT-RvD1 has been found 
to regulate leukocyte transport to the lung, increasing 
phagocytosis of neutrophils by macrophages and reducing 
levels of interleukin 6 (IL-6) and TNF-α.56

On the other hand, the permeability of the alveolar 
epithelium can trigger an inflammatory response by the 
entry of different exogenous and endogenous agents that 
can persistently stimulate the organism, which implies a 
challenge for the maintenance of homeostasis and the 
resolution of inflammation.

Some microorganisms have the capacity to become 
chronically established, such as Mycobacterium tuberculosis, 
the cause of TB, which has the highest number of deaths 
due to infectious disease in the world after the human 
immunodeficiency virus (HIV).57-59 In an experimental 
model of mice deficient in 5-lipooxygenase (5-LO, an 
enzyme responsible for the production of lipoxins), it 
appears to have better control of M. tuberculosis infection 
compared to wild-type mice infected with M. tuberculosis 
treated with a 5-LO inhibitor, where the latter had higher 
mortality and higher bacterial load. These results suggest 
that infection control is related to leukotriene production 
(proinflammatory pathway) rather than lipoxin production 
(anti-inflammatory pathway).60 While in another in 
vitro model of human macrophages infected with the 
virulent Mtb H37Rv strain treated exogenously with 
RvD1 and Mar1 induced the expression of antimicrobial 
peptides such as BPI (bactericidal permeability-increasing 
protein) and the human cathelicidin LL37, regulating the 
production of TNF-α and controlling the intracellular 
growth of Mtb.10 These investigations show us strategies 
that may eventually be used to support current TB 
treatment, either by supplementation of PMS precursors 
such as DHA/EPA or by exogenous administration of the 
PMS themselves.

Other external agents that can cause respiratory 
conditions include allergens (e.g., Derp2 proteins present 
in dust mite feces), non-degradable particles (such as 
asbestos) and even endogenous particulate crystals (e.g., 
cholesterol),61-63 not to mention cigarette smoke, which 
is associated with chronic respiratory, cardiovascular 
and tumor diseases, affecting the phagocytic capacity 
of macrophages.39,64-68 Some research has shown that 
prostaglandin analogues and lipoxins have physicochemical 
properties that improve the use of glucocorticoids, since 
a decrease in the latter improves the adverse effects, as 
well as resistance to steroids in asthma.69-71 In addition, 
in a model of allergic asthma, it was determined that the 
administration of some activators such as TLR7 (toll like 
receptor 7) increased DHA-derived SPMs such as PD-1, 17-
HDHA and 14-HDHA, helping to control the eosinophilia 
characterized in this animal model, as well as in another 
model by intraperitoneal administration of RvE1.72,73

Chronic obstructive pulmonary disease (COPD), 
neonatal respiratory distress syndrome (NRDS), acute 
respiratory distress syndrome (ARDS), acute lung injury (ALI) 
and asthma are respiratory system conditions with high 
incidence, morbidity and mortality. COPD is characterized 
by airflow limitation and is associated with an abnormal 
inflammatory response of the lungs to noxious particles or 
gasses. Tobacco smoke is the main risk factor,74-76 followed 
by air pollution,77,78 occupational exposure to dust and 
chemicals, recurrence of respiratory infections during 
childhood or genetic predisposition. Some studies in murine 
models have focused on the exogenous administration 
of LXA4, since this SPM competes with serum amyloid A 
(SAA, Serum amyloid A) proteins for the GPCR FPRR/ALX, 
SAA increases considerably in infections and is related 
to excessive neutrophil recruitment in COPD, therefore, 
both act as antagonists, which may help prevent chronic 
inflammation and pulmonary emphysema.75,76,79

On the other hand, NRDS, ARDS and ALI are diseases 
related to the pulmonary surfactant system, but also 
occur more frequently in the context of pneumonia, 
sepsis, aspiration of gastric contents or severe trauma, 
unlike asthma, which is considered a highly prevalent 
heterogeneous inflammatory disorder of the airways due 
to inflammation caused by various allergens.80-82 Eickmeier 
et al.83 found that administration of AT-RvD1 in a murine 
model of ALI decreased the amount of bronchoalveolar 
lavage fluid neutrophils, improved epithelial and 
endothelial barrier integrity, significantly decreased levels 
of proinflammatory cytokines such as interleukin 1β (IL-1β), 
IL-6 and TNF-α, as well as nuclear translocation of p65 
phosphorylated by NF-κB, so this SPM could also work 
for NRDS and ARDS.

Currently, COVID-19 disease caused by the SARS-
CoV-2 coronavirus has prompted the search for new 
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therapeutic strategies to combat the severity of the 
disease, focusing on the elimination of responses 
exacerbated by the production of proinflammatory 
cytokines,84 where some groups focused on SPM 
precursors, such as omega-3 PUFA supplementation, 
finding improvements in some parameters of respiratory 
and renal function in critically ill patients with COVID-19 
evaluated for one month, compared to patients without 
supplementation.85 Evaluation of the levels of some 
PMS in patients diagnosed with COVID-19 showed that 
critically ill patients had lower concentrations of PMS than 
those who were discharged.86,87 Recchiuti et al.88 found 
in an in vitro model of macrophages with or without 

cystic fibrosis exposed to SARS-CoV-2 virion glycoprotein 
S (Spike 1) that both RvD1 and RvD2 were able to 
regulate inflammatory functions by modulating miR-16, 
miR-29a and miR-103, and simultaneously selectively 
increased miR-223 and miR-125a, involved in NF-κB 
activation and macrophage inflammatory polarization. 
However, it remains to be elucidated whether different 
disease-associated risk factors including advanced age, 
hypertension, diabetes, obesity, or other comorbidities 
have any association with PMS.

As has been seen throughout the text, the analysis of 
the biological effects of PMS in respiratory infections may 
lead to new proposals for therapeutic immunomodulation. 

Table 2: Action of specialized pro-resolving lipid mediators in different experimental models.

SPM Cell or study model Action References

Mar1 Bronchial epithelial cells Reduced IL-6, TNF-α and IL-8, decreased neutrophil accumulation 13

Human macrophages Induces BPI expression, regulates TNF-α production and induces intracellular 
growth control of Mycobacterium tuberculosis

10

AT-RvD1 Bronchial epithelial cells Modulates LPS-induced bronchoalveolar lavage cell activation and the immune 
response of Dermatophagoides pteronyssinus mites

95

RvE1 Murine models of 
pneumonia

Reduces IL-1β, IL-6, PMN infiltration, improves survival and decreases 
bacterial loads

11

Murine models of critical 
illness

Inhibits translocation and activation of NF-κB (p65) 96

RvD1 Murine model

Murine model

Human alveolar 
macrophages

Human macrophages

In Escherichia coli and Staphylococcus aureus infections, it limits PMN 
infiltration, aids bacterial clearance and enhances

PMN infiltration, helps bacterial clearance and increases the resolution of the 
infection

In mice exposed long-term to cigarette smoke, it reduced emphysema and 
airspace enlargement, as well as and airspace enlargement as well as 

inflammation, oxidative stress and cell death
In human alveolar macrophages from COPD and non-COPD patients 

decreased IL-6 and TNF-α levels, while increased phagocytosis and promoted 
an M2 macrophage phenotype

Induces BPI and LL37 expression, upregulates TNF-α production and induces 
intracellular growth control of Mycobacterium tuberculosis

97

12

68,98

10

PD1 Human eosinophils Patients with PD1 impairment contribute to severe asthmatic persistence and 
severity of the disease, decreased adhesion molecules (CD11b and L-selectin), 

decreased chemotaxis

 96

LXA4 Serum and murine 
models

Negatively regulate protective Th1 lymphocyte responses against 
Mycobacterium tuberculosis infection

14

DHA, EPA 
and ALA

Human pulmonary 
fibroblasts and bronchial 

cell line (BEAS-2B)

They cause an amplification of inflammatory responses to viral and bacterial 
components, with production of IL-6 and CXCL8.

 15

SPM = specialized pro-resolving lipid mediators of inflammation; Mar1 = maresin 1; IL-6 = interleukin 6; v TNF-α = tumor necrosis factor alpha; IL-8 = interleukin 8; 
BP1 = bactericidal/permeability-increasing protein; AT-RvD1 = aspirin-triggered resolvin D1; LPS = lipopolysaccharide; RvE1 = resolvin E1; IL-1β = interleukin 1β;  
PMN = polymorphonuclear cells; NF-κB = nuclear factor enhancer of activated B cell kappa light chains (nuclear factor-κB); RvD1 = resolvin D1; COPD = chronic 
obstructive pulmonary disease; LL37 = cathelicidin; PD1 = protectin D1; LXA4 = lipoxin A4; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; ALA = α-linolenic 
acid; CXCL8 = chemokine [C-X-X motif] ligand 8.
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Recently, De Toledo et al.64 demonstrated that fraction 39 
of the mucus of the slug Phyllocaulis boraceiensis contains 
PUFA with potent antiviral activity against measles virus 
and influenza virus. Cell viability and toxicity of the 
mucus were evaluated in Madin-Darby canine kidney 
cells (MDCK) by the 3-(4,5- dimethylthiazol-2-yl)-2,5-
diphenyltetrazole bromide (MTT) assay, where they 
demonstrated that hydroxylated PUFA interfered with 
influenza virus binding to the host cell receptor, causing 
reduction in viral titers.

Moreover, in an in vitro model of human neutrophils, 
aspirin-triggered administration of lipoxin (15-epi-
LXA4) abrogates the suppression of myeloperoxidase 
(MPO, an enzyme with microbicidal activity) neutrophil 
apoptosis by blocking integrin β2-mediated signaling, 
improving the resolution of MPO-sustained lung 
injury.89-91 Meanwhile, in a murine model, acute lung 
injury by intraperitoneal injection of Escherichia coli 
was evaluated in mice and it was found that subsequent 
treatment with 15-epi-LXA4 promoted neutrophil 
apoptosis and improved the resolution of inflammation 
in lung injury, comparable to mice treated with RvD1 
prior to ALI by LPS, where RvD1 improved the survival 

rate of mice exposed to ALI with inhibition of TNF-α, 
IL-6 and decreased COX-2 expression.92 Similar results 
have been found with the administration of RvE1 in 
a murine model of pneumonia, with exposure to E. 
coli, where there was a reduction in the production of 
proinflammatory cytokines, a decrease in PMN and a 
reduction in E. coli bacterial loads, improving murine 
survival.11

On the other hand, Raposo et al.93 evaluated the 
nutritional intake of vitamin C, vitamin E, DHA, AA, 
selenium and zinc in a cohort of more than 1,500 
individuals aged 25 to 64 years who were followed for nine 
months, found an association in the susceptibility to upper 
respiratory tract infection in women than in men due to 
a decrease in the intake of DHA, AA and vitamins C and 
E. In contrast, in human lung fibroblasts and bronchial 
cell line (BEAS-2B) it has been shown that PUFA such as 
DHA, EPA and ALA (α-linolenic) elicit an amplification of 
inflammatory responses to viral and bacterial components, 
with production of IL-6 and CXCL8, suggesting that 
polyunsaturated fatty acids have no anti-inflammatory 
effects in these lung cells.94 A brief summary of the action 
of SPMs are shown in Table 2.

Figure 2: Inflammatory response and its resolution. After damage or infection by some microorganism an acute inflammatory response is initiated, which 
activates cardinal signs (heat, flushing, tumor, pain or loss of function) with production of proinflammatory cytokines (TNF-α, IL-1, IFN-γ, etc.) and neutrophilic 
infiltrate. This process also involves prostaglandins, leukotrienes and thromboxanes that come from the synthesis of arachidonic acid in an attempt to 
eliminate pathogens or noxious agents. This proinflammatory response shifts to an anti-inflammatory phenotype with the participation of pro-inflammatory 
lipid mediators. These lipid mediators come from the synthesis of eicosapentaenoic acid and docosahexaenoic acid ingested in the diet as omega-3 and 
omega-6 fatty acids. Resolution of the inflammatory response comes with tissue repair and restoration of homeostasis, but if there is no class switch from 
the proinflammatory lipid mediators to the anti-inflammatory phenotype, it can shift to chronic inflammation, with systemic and deleterious repercussions 
for the host.
TNF-α = tumor necrosis factor α; IL-1 = interleukin 1; AA = arachidonic acid; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; SPM = pro-inflammatory lipid 
mediators; LXA4 = lipoxin A4; RvD1 = resolvin D1; Mar1 = maresin 1; RvD2 = resolvin D2; PDX = protectin DX; Streptococcus pneumoniae; Mycoplasma pneumoniae; Coxiella 
burnetii; Pneumocystis jirovecii; Mycobacterium tuberculosis.
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INVOLVEMENT OF SPM IN THE 
RESOLUTION OF INFLAMMATION

Inflammation is a response of an organism’s immune 
system to damage caused by pathogens or substances of 
a biological, chemical, physical or mechanical nature and, 
depending on the duration, can be classified as acute or 
chronic.

Acute inflammation involves significant changes in 
plasma levels of histamine, bradykinin, prostaglandins, 
leukotrienes, thromboxanes and proinflammatory cytokines 
(TNF-α, IL-1, IL-1β, IL-2 and IL-6), crucial for controlling and 
eliminating harmful agents,99-104 but if acute inflammation 
is sustained, it leads to chronic inflammation with systemic 
and deleterious repercussions for the host, such as tissue 
infiltration by leukocyte aggregates (granuloma formation), 
uncontrolled collagen biosynthesis, leading to fibrosis or 
cirrhosis, permanent loss of normal tissue function (functio 
laesa) or oxidative damage to deoxyribonucleic acid (DNA), 
leading to degenerative diseases such as autoimmune 
diseases, cardiovascular disorders, osteoporosis, rheumatoid 
arthritis, Alzheimer’s disease, certain types of cancer and 
even death.103

Thus, the involvement of SPMs in the maintenance and 
response of inflammation is peremptory, performing the 
switch from a proinflammatory to an anti-inflammatory 
phenotype, thus aiding in tissue repair and the restoration 
of homeostasis,105 as shown in Figure 2.104

CONCLUSIONS

PUFA and their derivatives, SPM, have a protective 
and controlling effect on the elimination of pathogenic 
microorganisms, inflammation and tissue repair, which 
makes them important candidates for the search for new 
therapeutic strategies, as well as possible biomarkers. 
Further knowledge of their signaling mechanisms, 
synthesis pathways, production of their epimers, and 
research evaluating PUFA consumption and SPM levels 
in healthy subjects versus patients with respiratory 
diseases is needed to better understand the relationship 
between overall dietary PUFA profiles and their impact 
on future nutritional or pharmacological interventions as 
strategies to eradicate pathogens from various respiratory 
conditions.
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