Artículo:

Bone mineral density in vertebral compression fractures
Bone mineral density in vertebral compression fractures

Saúl Renán León Hernández,* Jesús Gerardo Mayorga Muñoz**

Naval Medical Center, Mexico

Objective. To estimate the best cut-off point of bone mineral density (BMD) measured simultaneously by dual X-ray absorptiometry (DEXA) and quantitative computed tomography (QCT) to rule out vertebral compression fractures and determine the prognosis. Material and methods. Twelve females with vertebral fractures and 27 with no fractures were included. BMD was measured in both groups by DEXA and QCT. Results. In women with fractures, DEXA and QCT matched in classifying 9 patients with severe osteoporosis but with very different BMD averages (p = 0.0001). The other 3 were classified as osteopenic by DEXA and as severely osteoporotic by QCT (p = 0.0001). Of the 27 patients with no fractures, 21 were considered as normal; of the remaining 6 patients, one was classified by DEXA as normal while QCT classified her as having osteopenia; and 5 patients were considered by DEXA as osteopenic while QCT classified them as osteoporotic (p = 0.0001). The best cut-off point to simultaneously improve the sensitivity and specificity of DEXA and QCT, according to the ROC curves, would be 0.7705 and 0.6515 g/cm², respectively. When applied in parallel, these values increased the sensitivity from 83.3% to 91.7% in detecting women at high risk of vertebral compression fracture, compatible with bone brittleness. Conclusions. 1. When the purpose is to discriminate and predict the presence or absence of fracture risk, the case classification (normal, osteopenic, osteoporotic, or severe) would improve the sensitivity and specificity of both techniques.

RESUMEN. Objetivo. Estimar los mejores puntos de corte de la densidad mineral ósea (DMO), medida simultáneamente por absorciometría dual de energía de rayos X (DEXA) y tomografía computada cuantitativa (TCC), para discriminar y predecir la fractura por compresión de cuerpos vertebrales. Material y métodos. Se incluyeron 12 mujeres con fractura de cuerpos vertebrales y 27 sin fractura. En ambos grupos se midió DMO por DEXA y TCC. Resultados. En las fracturadas, DEXA y TCC concordaron en clasificar con osteoporosis severa a 9 pacientes, pero con promedios de DMO muy diferentes (p = 0.0001); las 3 restantes, DEXA las clasificó con osteopenia y TCC con osteoporosis severa (p = 0.0001). En las no fracturadas se concordó en 21 casos, todos considerados normales; en las 6 restantes: DEXA clasificó 1 como normal, mientras TCC con osteopenia. En los otros 5, DEXA los clasificó con osteopenia mientras TCC con osteoporosis (p = 0.0001). Los mejores puntos de corte para elevar simultáneamente la sensibilidad y especificidad de DEXA y TCC, según las curvas COR, serían: 0.7705 y 0.6515 g/cm² respectivamente; que aplicados en paralelo incrementan la sensibilidad de 83.3% a un 91.7% para detectar a las mujeres con alto riesgo de fractura por compresión de cuerpos vertebrales, compatibles con fragilidad ósea. Conclusiones. 1. Para fines de discernir y predecir riesgo o no riesgo de fractura, la clasificación de los casos (normales, osteopenicos, osteoporóticos u osteoporóticos severos) según los T Score de la DMO medida por DEXA, no

* MSc in Social Medicine. Head of the Education Division, National Rehabilitation and Orthopedics Center, Secretariat of Health.
** Specialist in Radiology and Imaging at the Navy Medical Center – Navy of Mexico.

Mailing address:
Phone: 59 99 10 00 Ext. 12215, 12219

S15
produced bone capacity to bear the torsion and compression increased risk of fractures. The outcomes are due to a re-
osteoporosis was defined as “a systemic disease character-
growing. 4. After the 1993 consensus, reviewed in 1997,
their sequelae has become a major economic burden that is
casted by these fractures, the treatment of fractures and
following a first fracture is 20% higher than that of women
increase the discriminating power to distinguish vertebral bod-
yes with and without compression fractures in Mexican mes-
tizo women over 40 years of age. We also inferred that the
study could provide the best BMD cut-off points to estimate
the future chance of a woman with the already mentioned
characteristics of being classified in the vertebral “frac-
ture” or “non fracture” group. On the other hand, when
BMD is measured either with DEXA or with QCT, Mexi-
can mestizo women are classified as normal, osteopenic,
osteoporotic, or severely osteoporotic, depending on the
number of standard deviations the measured BMD is away
from the mean BMD established by WHO, according to the
reference group. However, the fact that the worldwide ref-
ference group used by WHO was made up of Caucasian
women has led to a silent debate around the external valid-
ity of such a reference group, i.e., around the global gener-
alization of its data.

We are asking the following question: is a determined
BMD value in a Mexican mestizo woman equivalent to a
certain level of the osteoporosis classification based on our
own standards? We believe the question is valid if we trust
the current WHO definition of osteoporosis concerning the
crucial concept of risk of bone brittleness-related fracture.
For instance, a woman over 40 years of age, with a BMD
of 0.7000 g/cm² as measured by DEXA may be classified
as “normal” because it is -1.0 standard deviations away
from the mean BMD of the reference group used by WHO.
However, how are we to classify her based on the mean
BMD of Mexican mestizo women used as internal refer-
ance? The answer may be obtained by starting with the
future chance of a woman with the already mentioned
characteristics of being classified in the vertebral “frac-
ture” or “non fracture” group. On the other hand, when
BMD is measured either with DEXA or with QCT, Mexi-
can mestizo women are classified as normal, osteopenic,
osteoporotic, or severely osteoporotic, depending on the
number of standard deviations the measured BMD is away
from the mean BMD established by WHO, according to the
reference group. However, the fact that the worldwide ref-
ference group used by WHO was made up of Caucasian
women has led to a silent debate around the external valid-
ity of such a reference group, i.e., around the global gener-
alization of its data.

We are asking the following question: is a determined
BMD value in a Mexican mestizo woman equivalent to a
certain level of the osteoporosis classification based on our
own standards? We believe the question is valid if we trust
the current WHO definition of osteoporosis concerning the
crucial concept of risk of bone brittleness-related fracture.
For instance, a woman over 40 years of age, with a BMD
of 0.7000 g/cm² as measured by DEXA may be classified
as “normal” because it is -1.0 standard deviations away
from the mean BMD of the reference group used by WHO.
However, how are we to classify her based on the mean
BMD of Mexican mestizo women used as internal refer-
ance? The answer may be obtained by starting with the
BMD cut-off point to first discriminate between women
with and without fractures due to compression of the verte-

Introduction

Setting the bone mineral density (BMD) limits that al-
allow estimating the risk of vertebral compression fracture is not a minor problem for various reasons. 1. Previous
studies report that the incidence and prevalence of low
BMD-related vertebral fractures in post-menopausal wom-
en has increased since the 1980s. 2. After a first vertebral
compression fracture, the risk of a second one, either at the
level of the spine itself or in other bones, especially the hip,
increases. 3. The mortality rate of women during the year
following a first fracture is 20% higher than that of women
without a fracture; together with the major disability
caused by these fractures, the treatment of fractures and
their sequelae has become a major economic burden that is
growing. 4. After the 1993 consensus, reviewed in 1997,
osteoporosis was defined as “a systemic disease character-
ized by a bone compromise predisposing people to in-
creased risk of fractures. The outcomes are due to a re-
duced bone capacity to bear the torsion and compression stresses”. WHO has added to this definition a statement
explaining that fractures due to bone brittleness are those
caused by a damage that is not severe enough to break a
normal bone. Clinically, a fracture due to bone brittleness
may be defined as one resulting from minimum trauma, a
high or low fall or even from unidentified trauma.

Currently the BMD measurement with dual energy X-
ray absorptiometry (DEXA) is considered as the most sen-
sitive and specific means to diagnose osteoporosis. Howev-
er, DEXA basically measures cortical BMD, which may
underestimate the true trabecular BMD levels. Delimitation
is very significant in this paper since it is known that bone
mass in vertebral bodies is composed of 20% cortical bone
and 80% trabecular bone. In contrast, quantitative comput-
ed tomography basically measures trabecular bone mass. The
discriminating power of QCT to classify subjects with
or without vertebral compression fractures has been shown
since the mid 1980s by accurate measurements of trabecu-
lar BMD. However, there are no current studies to accu-
Key words: fractures, bone mineral density, dual X-ray absorptiometry, computed tomography.
bral body or bone brittleness. This statement is reinforced by studies such as those by Melton and Kanis who felt that “every woman with a bone brittleness vertebral fracture … must be considered at high risk regardless of whether or not the BMD is within the ranges of osteoporosis”. Obviously these are the osteoporosis ranges based on the WHO reference group. Whether the combination of quantitative methods may increase the diagnostic accuracy and estimate the fracture risk is still debatable. One possible combination might be DEXA with QCT except that according to the systematic review quoted by Brown et al, the studies reported about the use of QCT have yet to meet the criteria of level 1 evidence. These criteria are as follows.

I. Independent interpretation of the testing results evaluated
II. Independent interpretation of the diagnosis made under the gold standard
III. Screening patients with suspected disease without actual confirmation
IV. Reproducibility of the test being evaluated and the gold standard
V. Including at least 50 people with the disease and 50 people without the disease

Items at evidence level 2 are considered those meeting 4 criteria in level 1. Level 3 meet 3 of those criteria; and level 4 meet 1 or 2 criteria in level 1.

In summary, this study was developed to show the following: 1) an anticipated classification with explicit criteria of a group of Mexican mestizo women over 40 years of age as a) with compression fracture; and b) without vertebral compression fracture, and the combined or parallel use of DEXA and QCT to measure BMD, would allow us to improve the discriminating power to distinguish both groups and estimate the a posteriori chance that a woman over 40 years of age has to be classified in either group, based on her BMD. 2) The best cut-off point for BMD to discriminate patients with or without fracture might redefine the WHO classification in our setting based on the bone brittleness-related vertebral body fracture concept.

Material and methods

In the clinical and radiological study, 39 patients over 40 years of age were included. Of them, 12 had vertebral compression fracture due to minimum or no trauma (compatible with bone a brittleness fracture) and 27 patients had no fractures or a history of fracture of those bones. BMD in both groups was measured by DEXA and QCT simultaneously.

Before the final measurements, the variation coefficient in both diagnostic procedures were assessed in a pilot group of 20 women (10 with fractures and 10 without vertebral body fractures). The coefficients were found to be less than 2%. The equipment was calibrated after these evaluations and the same person, an expert in imaging, performed the final measurements by DEXA and QCT, which were interpreted by two independent observers. The diagnosis of fracture was based on the radiological criteria pointed out in the systematic review by Brown et al. and confirmed also by two additional independent evaluators.

Data were entered and processed using SPSS 11.0 for Windows. The mean ages and BMD were calculated by means of the General Linear Model for the single univariate analysis, with both groups (fracture and non fracture) and the WHO classification, based on the T Score (normal, osteopenia, osteoporosis, or severe osteoporosis) as fixed factors. The discriminating analysis was made to contrast the usefulness of BMD measurements to determine the chance of women of being classified into either study group.

Table 1 shows that out of the 12 patients considered as having fractures according to the WHO criteria, 3 patients were classified as osteopenic based on the cortical BMD measured by DEXA. In contrast, the same patients were classified as having severe osteoporosis based on the trabecular BMD measured by QCT. In the remaining 9 patients the DEXA and QCT classifications matched as severe osteoporosis. However, in both situations the mean BMD according to DEXA vs. QCT was significantly different (p = 0.0001 respectively). Notice that the mean BMD measured by DEXA was systematically above the QCT measurement.

Table 2 shows that DEXA and QCT matched in classifying 7 women with no fractures as having osteopenia. However, while according to DEXA 5 women or more were classified as having osteopenia, according to QCT the same women were classified as having osteoporosis. Regarding the second item in Table 2 DEXA and QCT matched in classifying 2 women as having osteoporosis. Finally both diagnostic procedures classified 12 controls as normal, but the last control was classified as normal by DEXA while QCT classified her as having osteopenia.

Figure 1 shows the intersection of simultaneous BMD values obtained with DEXA and QCT (Pearson’s r correlation coefficient between DEXA and QCT in women both with and without fractures is 0.98, p = 0.0001) allowing women to be divided into two different groups: with and without fractures. However, the dispersion cloud also shows that in some patients with no fractures the BMD crossed values overlap with those of women with fractures. This shows the need for a different classification procedure such as the discriminating analysis and, of course, the ROC curves, to estimate the best cut-off points simultaneously thus increasing the sensitivity and specificity of measurements.

Results
Table 1. Mean BMD (g/cm²) in women with fractures (n = 12).

<table>
<thead>
<tr>
<th>WHO/DEXA</th>
<th>WHO/QCT</th>
<th>DEXA/ Cortical BMD</th>
<th>QCT/ Trabecular BMD</th>
<th>Age</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteopenia</td>
<td>Osteopenia</td>
<td>0.7821</td>
<td>0.7240</td>
<td>61</td>
<td>7</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Osteoporosis</td>
<td>0.7080</td>
<td>0.6470</td>
<td>68</td>
<td>5</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Osteoporosis</td>
<td>0.6755</td>
<td>0.6115</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>0.8184</td>
<td>0.8185</td>
<td>63</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.8074</td>
<td>0.7463</td>
<td>63</td>
<td>27</td>
</tr>
</tbody>
</table>

Table 2. Mean BMD (g/cm²) in women with no fractures (n = 27).

<table>
<thead>
<tr>
<th>WHO/DEXA</th>
<th>WHO/QCT</th>
<th>DEXA/ Cortical BMD</th>
<th>QCT/ Trabecular BMD</th>
<th>Age</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteopenia</td>
<td>Osteopenia</td>
<td>0.7436</td>
<td>0.6466</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Osteoporosis</td>
<td>0.5905</td>
<td>0.5277</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Osteoporosis</td>
<td>0.6188</td>
<td>0.5570</td>
<td>58</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 3. Classification of women with or without fractures according to the discriminating analysis /BMD and WHO classification.

According to the tables shown, and following the WHO classification and the trabecular BMD measured by QCT, 7 controls (26%) would be classified as patients with osteoporosis and therefore at high risk for vertebral compression fracture. On the other hand, according to the cortical BMD only 2 controls (7.4%) would have BMD levels consistent with those in patients with fractures. Considering only the BMD levels and the corresponding WHO classification, the discriminating analysis clearly confirms this as seen on panels A and B of Table 3.

Now, if age is considered as an independent factor together with the BMD level measured by DEXA or by QCT, the discriminating analysis points out that as much as 92.3% of the original cases (with and without fractures) would be properly classified, as seen on panels A and B of Table 4.

Notice now that according to the discriminating analysis, 100% (n = 12) of the women with fractures would be properly classified in terms of BMD by DEXA and QCT depending on the age of patients. However, 3 of the 27 women without fractures might be classified on a predictive basis as women with fractures. In other words, as much as 11.1% of them would be at risk of imminent fracture. BMD levels in these 3 cases were those shown on Table 5.

Figure 1. Dispersion diagram for DEXA and QCT by study group.

Patients with fractures vs patients without fractures
These cases are part of the 7 cases presented in Table 3 Panel B, which were classified with osteopenia by DEXA and osteoporosis by QCT. BMD levels of the other 4 cases were those shown in Table 6.

In the least bad scenario DEXA would underestimate 4 cases with a high chance of fracture, and in the worst case scenario it would be actually underestimating 7 women who, according to QCT, would be susceptible to fracture due to their low trabecular BMD levels. ROC curves for both measures are as follows.

The first ROC curve (Figure 2) corresponds to the cutoff points for the BMD estimated by DEXA (area under the curve 0.954, p = 0.0001) where 0.7005 g/cm² BMD would have a sensitivity of 83.3% with 14.8% false positives. In fact, notice that all 3 cases pointed out in Table 5 are within the above cut-off point and, at the same time, they were classified as osteopenia. On the other hand, the remaining 9 patients had a mean 0.5905 g/cm² of BMD and were classified as having severe osteoporosis. In the next ROC curve (Figure 3), that represents the BMD by QCT (area
under the curve 0.961, \(p = 0.0001 \), a 0.6515 g/cm\(^2\) result would show a 91.7% sensitivity with 14.8% false positives, and all patients (17 = 12 with fractures + 5 without fractures) who were classified as having osteoporosis by QCT were under the cut-off point. Of these, at least 8 were classified as osteopenia by DEXA (3 with fractures and 5 without fractures).

Finally, taking as reference the cut-off points of 0.7005 g/cm\(^2\) for DEXA and 0.6515 g/cm\(^2\) for QCT, again the sensitivity of the former would be in the order of 83.3% (probability ratio 17.4, \(p = 0.0001 \)) and 91.7% for QCT (probability ratio of 17.6, \(p = 0.0001 \)). Likewise, it is possible to estimate that the approximate relative risk would be 28.7 (95% CL: 4.5–183.3) plus the probability of patients with fractures (compared to patients without fractures) to be within or under the 0.6515 g/cm\(^2\) BMD measured by QCT. The approximate relative risk would increase to 63.2 (95% CL: 6.3 – 634.7) plus the probability of patients with fractures (compared to patients without fractures) to be within or under the 0.6515 g/cm\(^2\) BMD measured by DEXA.

Discussion

Until the time when this research work was closed, it clearly appeared that it could be classified as evidence level 2 in accordance with the criteria proposed by Brown et al.\(^6\) We met 4 of the 5 criteria specified by these authors. However, it was not possible to gather at least 50 women with fractures and 50 women without fractures. In spite of this, the first results clearly indicate that DEXA and QCT may become combined parallel tests to predict the risk of vertebral compression fractures due to bone brittleness. In fact, according to the systematic review by Brown et al, every patient who sustained a vertebral compression fracture should be classified as high risk for fractures elsewhere, regardless of whether or not the BMD is within the osteoporosis range according to the WHO T Score. Obviously, the 12 patients with fractures should be considered at high risk for further vertebral fractures or fractures elsewhere, especially the hip,\(^7,9\) due to bone brittleness.

If we trusted only the DEXA results, 3 (25%) of the above 12 patients would be classified as having osteopenia; on the other hand, if subject to QCT, these same 12 women (100%) would be classified as having severe osteoporosis. The results better match the patient definition of high risk for fracture. This classification further predicts the discriminating analysis.

The main problem would be classifying all 27 women acting as controls. According to DEXA, 13 patients (48.1%) would be truly normal. Of these, according to the QCT measurement, 11 (44.4%) would actually be normal. In summary, in terms of specificity, both procedures would be very similar; nonetheless, in terms of sensitivity, DEXA would underestimate the risk for a probable fracture in 6 control women, especially because the mean age of these women is 68 years. According to QCT, these women would be considered borderline with overt osteoporosis because of their trabecular BMD. In other words, QCT would point out that 6/27 (22.2%) control women are actually at high risk for a probable vertebral body fracture. This result is similar to the one predicted in the tables presented by Kanis et al,\(^10\) in which a 70 year old Caucasian woman and a T-score classified as -2.5 standard deviations would involve a 16.2% chance of sustaining a fracture due to bone brittleness at the hip level.

The reason to use DEXA combined or in parallel with QCT is based on studies describing the pathological microanatomy of bone brittleness in vertebral bodies. According to Aaron et al,\(^11\) and Seeman\(^12\) the loss of connectivity in trabecular basic multicellular units (BMU) prevails in elderly women. Structural failure occurs when the bone remodeling process in periosteal bone formation (which is also decreased) is unable to compensate for most of the endosteal BMD and trabecular loss and ultimately microlesions and perforations occur, and the bone architecture is destroyed when the vertebral body brittleness falls below the fracture threshold.

We drew at least the following conclusions: 1) Cases are classified according to the BMD T Score measured by DEXA as normal, with osteopenia, with osteoporosis, or with severe osteoporosis. This classification does not accurately match the mean BMD levels in vertebral bodies in our series to discriminate and predict the presence or absence of fracture risk. 2) It would be desirable to use both diagnostic procedures. While DEXA measures cortical BMD, QCT measures trabecular BMD and together, both may provide a better patient classification that allows predicting the risk of vertebral body compression fractures. In fact, the best BMD cut-off points to predict the risk for a vertebral compression fracture would be \(\leq 0.7005 \) g/cm\(^2\) for the cortical BMD measured by DEXA, and \(\leq 0.6515 \) g/cm\(^2\) for the trabecular BMD measured by QCT.

Bibliography

7. Klotzbuecher CM, Ross PD, Landsman P, Abbott TA, Berger M: Patients with prior fractures have an increased risk of future frac-
Bone mineral density in vertebral compression fractures