ELECTROCHEMICAL STUDY OF CIS-DIFERROCENYLETHENE DERIVATES

Luis Ortiz-Fradea, Jorge A. Reyna-Cancinob, Lena Ruiz-Azuaraab, Rafael Moreno-Esparzab, Marcos Martínez-Garcíac, Elena Klimovab and Mario Altamiranoa

aUnidad de Investigación en Genética y Toxicología Ambiental, Facultad de Estudios Superiores Zaragoza, UNAM. Batalla 5 de mayo s/n Esq. Fuerte de Loreto. Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, México D.F. bDepto. de Química Inorgánica, Facultad de Química, UNAM. Av. Universidad 3000, Ciudad Universitaria, México, D.F. 04510, México. cPreviously Lena Ruiz-Ramírez. Instituto de Química, UNAM. Av. Universidad 3000, Ciudad Universitaria, México, D.F. 04510, México. E-mail: alaofrade@gmail.com

\textbf{Abstract}
Ferrocene derivatives have been used in the synthesis of polymeric materials with thermal resistance and nonlinear optical properties, and in the field of supramolecular electrochemistry as redox switching receptors. For these reasons, during the past few years the electrochemical studies on ferrocenyl derivatives have been growing up. In order to characterize molecules with potential uses in the synthesis of polymeric materials and to understand its electrochemical functioning, this paper presents electrochemical studies on these chemicals: 1) cis-diferrocenylethenes derivates (Isopropyl cis-2,3-Diferrocenylacrylate; 2) cis-2,3-Diferrocenylacrylic Acid; 3) cis-2,3-Diferrocenylacrylohydrazide; 4) cis-2,3-Diferrocenylacrylic Acid Piperidide; 5) cis-3,4-Diferrocenyl-2-methylbut-3-en-ol, and 6) cis-1,1-Diphenyl-2,3-Diferrocenylprop-2-en-1-ol. All of the chemicals presented two oxidation processes (I-II), which were thought to be caused by the oxidation of the ferrocene groups, $E_{1/2}(I)$, $E_{1/2}(II)$, $\Delta E_{1/2}$ (II-I). The comproportionation constant K_{com} was calculated. According to this value, it can be proposed that the molecules containing a carbonyl group (1-4) present larger electronic communication compared to molecules with a hydroxy group (5-6). Uv-vis spectra of all compounds in butonitrile solution were obtained. A correlation between K_{com} and λ_{max} was also observed.

Key Words: Cis-2,3-diferrocenylacrylates, cis-2,3-diferrocenyl allyl carbinoles, cyclic voltammetry, diferrocene, electrochemistry, ferrocene.

\textbf{Resumen}
Los derivados del Ferroceno han sido empleados en la síntesis de materiales poliméricos con resistencia térmica y con propiedades ópticas no lineales y en el campo de la electroquímica supramolecular como receptores de interruptores redox. Por estas razones los estudios electroquímicos de los derivados ferrocenil se han incrementado en los últimos años. Con la finalidad de caracterizar moléculas con potenciales usos en la síntesis de materiales poliméricos y entender su comportamiento electroquímico, este trabajo presenta estudios electroquímicos de derivados cis-diferrocenileteneos (cis-2,3-Diferrocenilacrilato de isopropilo (1), Ácido cis-2,3-Diferrocenilacrílico (2), cis-2,3-Diferrocenilacrilohidrazida (3), Piperidina del Ácido cis-2,3-Diferrocenilacrílico (4), cis-3,4-Diferrocenil-2-metilbut-3-en-ol (5), cis-1,1-Difenil-2,3-Diferrocenilprop-2-en-1-ol (6). Todos los compuestos presentan dos procesos de oxidación (I-II), atribuidos a la oxidación de los dos ferrocenos, $E_{1/2}(I)$, $E_{1/2}(II)$, $\Delta E_{1/2}$ (II-I). Se calcula la constante de desproporción K_{com}. De este valor se propone que las moléculas que contienen el grupo carbonilo (1-4) presentan una gran comunicación electrónica comparada con las moléculas que contiene un grupo hidroxil (5-6). El espectro UV-vis de todos los compuestos se obtuvo en butonitrilo. Se encontró también una correlación entre K_{com} y λ_{max}.

Palabras Clave: Cis-2,3-diferrocenilacrilato, cis-2,3-diferrocenil álilo carbinoles, voltametría cíclica, diferrocenos, electroquímica, ferroceno.

Nota: Artículo recibido el 11 de mayo de 2007 y aceptado el 04 de junio de 2007.
INTRODUCTION

Ferrocene molecule has a extraordinary thermal stability, its structure is retained up to 500°C; this fact has made ferrocene suitable for fire retardant applications. For example, when used as fuel additive suppresses soot in several processes like acetylene pyrolysis, and poly(vinyl chloride) combustion.

In the realm of materials science, several polymers containing ferrocene derivatives have been reported. These polymeric materials present optical nonlinearities, magnetic, redox and electrical properties. Several reports focus on the thermal stability of different ferrocene-containing polymers.

Additionally ferrocene-containing polymers have been used as molecular building blocks, and in supramolecular electrochemistry as redox switching receptors.

Ferrocene moieties in diferrocényleneethenes derivates that are separated by unsaturated carbon-carbon bonds present two separated electrochemical-reversible oxidation processes; the splitting can be attributed to the electronic communication of the two iron redox centers in the mixed valence state or simpler to the splitting can be attributed to the electronic communication of the separated electrochemical-reversible oxidation processes; the separated by unsaturated carbon-carbon bonds present two valence species within the Robin-Day classification.

Indicates the degree of charge delocalization in the mixed-valence species within the Robin-Day classification.

Klimova et al. reported a series of compounds containing diferrocényleneethenes with different substituents with possible uses in the synthesis of polymeric materials. Despite the well done characterization of these compounds no electrochemical studies were performed.

In order to characterize molecules with potential uses in the synthesis of polymeric materials and to understand the electrochemical behavior of cis-2,3-diferrocénylacrylate, expecting a different electronic communication between ferrocene moieties due to the different substituents, this paper presents electrochemical studies of compounds (1-6) and their comproportionation constant . A correlation between and of the absorption bands, obtained from UV-Vis spectra, is also reported.

EXPERIMENTAL SECTION

Chemicals

The following reagents were purchased from Aldrich: tetrachlorocyclopropenone, 98%; ferrocene, 98%; aluminum chloride, 99.99%; hydrazine monohydrate, 98%; piperidine, 99%; methyl lithium, 1.6 M solution in diethyl ether; ethylmagnesium chloride, 2.0 M solution in diethyl ether; lithium aluminum hydride, powder, 95%; potassium tert-butoxide, 95%; deuterium oxide, 100.00 atom% D. Tetrafluoroboric acid-diethyl ether (50-52%) was purchased from Alfa Aesar. For electrochemical experiments, Tetra-N-butylammonium chloride (TBACl) was obtained from Fluka, and Tetra-N-butylammonium tetrafluoroborate (TBABF₄) was purchased from Aldrich Chemical Co.

Compounds 1-6 were synthesized from 2,3-diferrocénylcyclopropenone and their corresponding nucleophiles as it was described in literature. The melting points of compounds 1-6 and the RMN spectra are according to those reported in literature.

Experimental studies

All electrochemical measurements were performed in butironitrile (HPLC grade, in order to work with the minimum amount of water) solution containing 0.1 M tetra-N-butylammonium tetrafluoroborate (TBABF₄) as supporting electrolyte. A potentiostat/galvanostat EG&G PAR model 263 controlled by a PC software was used. A typical three-electrode array was employed for all electrochemical measurements: platinum disk as working electrode, platinum wire as counter-electrode, and a pseudo reference electrode of silver wire immersed in an butironitrile solution with 0.1 M tetra-N-butylammonium chloride (TBACl). All solutions were bubbled with nitrogen prior each measurement. All voltammograms were initiated from open circuit potential and the scan potential was obtained in both positive and negative directions. All potentials were reported versus the couple Fc+/Fc according to IUPAC convention.

UV-Vis spectra of compounds 1-6

A Hewlett-Packard 5484A diode array spectrophotometer was used to acquire UV-Vis spectra. Sample concentrations of ca. 1x10⁻⁴ M in butironitrile solution containing 0.1 M TBABF₄.

Results and Discussion

Electrochemical studies of compounds (1-6)

The electrochemical behavior of compounds 1-6 was investigated by cyclic voltammetry. In all experiments, a 1 mM solution of each compound in supporting electrolyte (0.1 M TBABF₄ in butironitrile) was used. Figure 1 shows...
The electrochemical behavior for compounds 2-7 is very similar to that observed for 1, though there are changes in the values of peak potentials. For all compounds, the half-wave potential of processes I and II, and the comproportionation constant \(K_{com} \) were evaluated (Table I).

The higher values of \(\Delta E_{1/2} \) (II-I) in compounds containing carbonyl group (1-4) suggests an increase electronic communication between the two ferrocenes, due to the
unsaturated character of carbon in carbonyl. The lower values of $\Delta E_{1/2}$ (II-I) in compounds (5 and 6) can be attributed to a minor degree of communication of ferrocenes by the presence of a saturated carbon (Table I).

K_{com} WITH λ_{max} Correlation

In order to obtain a correlation between a redox parameter with other property characteristic of the redox center, UV-Vis spectra was acquired (Figure 3). UV-Vis spectrum of compound 1 in butyronitrile solution containing 0.1 M TBABF$_4$ exhibits two spin allowed ligand field absorption transitions at 464 nm and 360 nm ($^1A_{tg} \rightarrow ^bE_{tg}$ and $^1A_{tg} \rightarrow ^aE_{tg}$, respectively), and one charge transfer band at 305 nm. The assignment was made by analogy with ferrocene$^{36-37}$. Table II shows the selected electronic spectra absorption data for compounds 1-6. The spectra for all complexes are similar to that observed for 1.

From tables I and II it is observed that K_c increases linearly as the λ_{max} of the absorption bands around 400 nm increase: particularly for compounds (1-4). This correlation between K_c and λ_{max} was found to have the equation $K_{\text{com}} = 53.80 \lambda_{\text{max}} - 24301.40$, with a correlation coefficient $r = 0.9997$. This can be explained in terms of a stronger delocalization (higher K_{com}) resulting in a lower energy of the absorption band ($1/\lambda_{\text{max}}$). For compounds 5-6 no correlation was found due to the same electrochemical behavior and the same λ_{max}.

Conclusion

A different electronic communication between ferrocene moieties in all compounds was observed. High values of $\Delta E_{1/2}$ (II-I) and K_{com} in vinylferrocene compounds containing carbonyl group indicates a high electronic communication between the two ferrocenes. Low values of $\Delta E_{1/2}$ (II-I) and K_{com} in vinylferrocene compounds containing alcohol group indicates a low electronic communication between the two ferrocenes. This fact suggests that carbonyl group is a good substituent that allow the electronic communication.

A correlation of two experimental parameters, that are related to the electron density of the metallic center was obtained (K_{com} and λ_{max}). This suggests that for a high value of λ_{max} (low energy) there is a low communication between the two redox centers.

Due to the fact that all compounds presented in this work are oxidized only in ferrocene moieties, they can be employed as polymeric materials that can present optical nonlinearities, magnetic, redox and electrical properties.
REFERENCES AND NOTES