PENTAMERISM AND MODULARITY IN SEA URCHINS

Juan López-Sauceda¹ and José Luis Aragón²

¹Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Circuito
Escobar, Ciudad Universitaria, 04510 México D.F., México. Email: nasakw7@fata.unam.mx
²Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México,
Apartado Postal 1-1010, 76230 Querétaro, México. Email: aragon@fata.unam.mx

ABSTRACT

Fivefold symmetry is important in many scientific areas. In particular, five-part units or pentamerism is a basic pattern in
the design of many animals and plants. Despite some efforts, a definite explanation of the abundance of this pentamerism
is still missing. In this note we use sea urchins as working examples to propose some ideas, based on spatial efficiency
arguments and the concept of modular systems, which can give clues to understand the advantages of a pentameral body
plan partition in biological systems.

Key Words: Modularity, pentamerism, sea urchins.

One of the most puzzling properties in many biological
systems is the pentagonal symmetry. There are many
notable examples of pentagonal symmetry in the
members of the phylum Echinodermata, radiolarians,
flowering plants and some fruits. In many cases radial symmetry
is displayed but in some others it only remains a bilateral
symmetry but the body is still divided into five parts, one of these
parts lying along the mirror axis. These five-part units are
common in both animal and plant design. We shall refer to both
cases as pentamerism or pentameral symmetry. Despite of this
abundance, there are few comments on pentamerism, with some
important exceptions¹,². In a pioneering work, Breder¹
shows that pentagonal symmetry is the basic pattern of flowers, dicotyledons,
echinoderms, the vertebrate body section, the distal ends of
tetrapod limbs, and of the oral armature of priapulids. Breeder
concludes “Five-partness, where it appears, is held to with great
rigidity, even when extensive evolutionary change has taken
place. This does not seem to be the case to such a marked extent
where other symmetries are concerned, as the coelenterates
witness”.

The reasons for the success of pentamerism, where it appears,
are not yet understood. It is in sea urchins (Figure 1a) where more
hypotheses have been formulated, either on the origin of
pentamerism (see Ref. 3 and references therein) or its robustness,
based on mechanical or functional models⁴. If these hypotheses
are true, however, they do not explain the occurrence and
robustness of pentamerism in all other organisms. Breeder¹
suggested that the origin of the stability of the pentamerism lies
in the geometrical properties of the pentagon. López-Sauceda &
Aragón⁵ suggested that in fact a geometrical property, the
regularity, may be the reason for selecting certain symmetries but
even it was no clear why the pentagonal symmetry is preferred
in sea urchins. In this note, we retake this problem by using the
concept of modular systems.

Some biological systems are characterized by properties that can
be explained in terms of the relationships between entities inside

Nota: Artículo recibido el 30 de septiembre de 2010 y aceptado el 22
de octubre de 2010.
of self-maintaining systems or modules and knowledge of modules and their integration is important to understand some properties of these organisms. The analysis of abstract entities into constituent elements, and their degrees of interaction among internal parts, represents a source of important information in terms of constrictions and evolvability. This approach is called modularity.

This concept might be seen as a tool to infer features of the way organisms are build, for instance due to organizational principles of self-maintaining systems, or it may be an “evolved property”

The identification of structural and architectural modules is often a straightforward matter, for instance, Eble points out “the parts and characters routinely identified by the morphologist reflect hypotheses of modularity based on observational or quantitative criteria, without reference to the generative mechanisms or the theoretical contexts to which modules relate”.

One of the most basic levels, which conforms phenotypic features in animal evolution, is the body plan. Sea urchins have a pentameral readily visible body plan, with either radial and/or bilateral symmetry (Figure 1a); such a partition defines an architectural space with some degree of interaction between parts. Our aim is the analysis of pentameral body plan partitioning in order to understand not just the biological description of visible modules and their interactions, but to establish a plausible hypothesis in terms of spatial efficiency.

Measurements of regularity in a sample of living and extant sea urchins were carried out in López-Sauceda & Aragón by associating a set of five vectors, called a star (Figure 1b), to the five ocular plates in the apical disk; the regularity was associated with the eutacticity of the star. A given star of vectors \{u_1, u_2, ..., u_5\} is said to be eutactic if it can be obtained by projecting an orthogonal set of N vectors \{U_1, U_2, ..., U_N\} in a N-dimensional space. That is, if P is an orthogonal projector then the star is eutactic provided that P(U_i) = u_i, for i = 1, 2, ..., N. From this definition, a measure of regularity can be proposed and it was used to measure the regularity of the studied sea urchins. The analysis suggested a high degree of regularity (eutacticity) in the shape of these organisms through their evolution. Rare deviations of regularity were measured in Holasteroida order, which seems to constitute a critical evolutive event in sea urchins evolution. All these results provide strong evidence that the regularity of the five-vector stars associated with the studied samples was favored through evolution but no clues about the advantages of stars with five, instead of say six or four, vectors were available. Steps further were taken by López-Sauceda, who performed a numerical experiment, generating random bilateral stars with three, four, five, etc., vectors; the main idea was to determine if a star with a given number of vectors (hopefully five) could have more probability to be eutactic if its coordinates were chosen randomly, maintaining bilaterality. A statistical analysis of the obtained results yielded that stars with seven and eight vectors have more probability to be regular. If we just take into account the more frequently observed symmetries in Natura, those stars with four, five and six vectors have more probability to be regular if they are randomly generated, with a slight preference for pentagonal stars. The biological advantage of pentamerism, however, does not arise from these results and, even more, there was observed a tendency to prefer stars with seven and eight vectors. In order to pursue in this research, an approach based on modularity is now adopted. The main hypothesis is that regular (eutactic) pentagonal stars yield more homogeneous partitions of space.

A first step to verify the hypothesis was to define our modules that in this case are obtained by the following geometrical procedure (see Figure 2):

1. A random star \(S\) of \(N\) vectors, \(\{u_1, u_2, ..., u_N\}\), is generated inside a circle of radius \(R\).

2. In the same circle, a set of \(\mathcal{P}\) of randomly generated points is inscribed with the restriction that no two points of \(\mathcal{P} + S\) are closer than a certain distance \(r\).

3. The Voronoi tessellation associated with the set of points \(\mathcal{P} + S\) is calculated.

4. The Voronoi tessellation obtained in the previous step is partitioned as follows. Given a vertex \(u\) of the star \(S\), the set of Voronoi polygons that are closer to \(u\) than to any other vertex \(u_i\) \((i \neq i)\) are selected; this process is repeated for each vertex \(u_i\) \((i = 1, 2, ..., N)\). Thus, the Voronoi tessellation is partitioned into \(N\) sub-tessellations or modules \(L_1, L_2, ..., L_N\).

Let \(A_i\) be the total area of the Voronoi polygons associated with the module \(L_i\). Our main goal will now be to study the variation of total areas between modules \(L_i\), \(i = 1, 2, ..., N\), for partitions associated with regular and irregular stars; the larger variation, the less homogeneous the partition of the space is. In order to support the statistics, for each star \(S\), generated at step 1, \(M\) sets of random points, \(\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_M\), are generated and for each set, steps 2, 3 and 4, of the above procedure, are applied. Now, for a...
Other parameter values were variability of module pseudo-random points, with normal distribution, were generated. Therefore, let A_{m} the total area of the module L_{m} of the star S, corresponding to the set of random points P_{j}. The mean area of the module L_{m} is then

$$
\bar{A}_{m} = \frac{1}{E} \sum_{j=1}^{E} A_{mj} = \frac{1}{M \times E} \sum_{j=1}^{E} \sum_{p=1}^{M} A_{mj}^{p},
$$

and the standard deviation of the E mean areas corresponding to the Module L_{m} is

$$
\sigma_{m} = \sqrt{\frac{1}{M \times E} \sum_{j=1}^{E} \sum_{p=1}^{M} (A_{mj}^{p} - \bar{A}_{m})^2}.
$$

With all this, the null hypothesis is that the standard deviation corresponding to regular star is the same that the standard deviation resulting from irregular stars. Stars with $N=3, 4, 5, 6$ and 7 vertices were considered and in all cases sets P_{j} with 300 pseudo-random points, with normal distribution, were generated. Other parameter values were $E=100$, $M=100$, $R=3$ and $r=0.5$. To avoid non-representative data, during the calculation of Voronoi tessellations, polygons with at least one vertex outside the convex hull were removed.

Since the standard deviation σ_{m} provides estimation of the area variability of module L_{m}, we performed an ANOVA to detect statistically significant differences on area variability of modules corresponding to regular and irregular stars. From ANOVA (Figure 3) it can be observed that the variability in modules coming from partitions generated by irregular stars is considerably larger. This statistical difference is more noticeably when all modules from regular and irregular partitions are compared (Figure 3). Thus, the null hypothesis is rejected in 23 of 25 modules studied and, consequently, the area variability of modules obtained from regular stars is different than those obtained from irregular stars. Even more, regular stars yield modules with lower variability than modules coming from irregular stars. It should be pointed out that our experiment fails in the cases of modules L_{3} in partitions with 3 modules and L_{4} in partitions with 4 modules. In both cases, no statistically significant differences between partitions coming from regular and irregular stars were observed.

In the theory of modules the “interaction”, in the sense of efficiency, and “interference”, in the sense of inefficiency, are useful concepts. Interaction can be interpreted as physical contiguity of modules but interference, which also needs continuity, implies territory invasion between modules. The larger variability of size (or area) the more interference between contiguous modules. Paradoxically, interference between modules is also required to exchange biological information; excessive interference, however, produces disorganization. With these ideas, we can retrace the discussion about possible biological advantages of pentagonal arrangements. Modules with a high degree of independence have low possibilities to interact with its neighbors and, given its high organization (low variability), the resulting modular structure tends to be rigid, with low potential to change or, in biological terms, with low evolvability.

Notice that from our results, it turns out that if the mean of \bar{A}_{m}, denoted by \bar{A}_{m}, provides information about the variability of the area variability of modules, then the standard deviation of \bar{A}_{m} contains the information about the interaction between modules. By calculating this standard deviation (error bars in Figure 3), we get that structures with irregular modules have large values, thus implying large interference between modules. On the contrary, structures with regular modules have small values of standard deviations thus small interference between modules is measured. Finally, structures with five modules have intermediate values so neither large nor small interference between modules is assumed. These results are depicted in Figure 4 and can be interpreted as follows. Structures with three, four and six modules display excessive interference, thus disorganization. Arrangements with high degree of organization (eutacticity) such as those with seven modules have almost no interference so they are more rigid. Structures with five modules have a high degree of organization (eutacticity) and, at the same time, they show an adequate equilibrium between interference and rigidity, that can be interpreted as transformational potential. Consequently,
Figure 3. ANOVA of differences of area variability (mean of σ_m) for regular and irregular partitions of the space. Partitions with (a) Three modules (*: $P = 0.0001$), (b) Four modules (*: $P = 0.001$), (c) Five modules (*: $P = 0.05$), (d) Six modules (*: $P = 0.01$) and (e) Seven modules (*: $P = 0.01$).
structures with five modules lie in the borderline between rigidity and disorganization; this particular equilibrium seems to be necessary to get an optimal balance between organization and evolvability.

Albeit much more work is needed, our approach seems to point along a promising direction in order to clarify the advantages of pentamerism in Nature. It would be interesting to mention the fact that pentagonal arrangements appear in other realms of science with the same property of lying in borderlines between ordered and disordered structures. In materials science, for instance, the atomic order of quasicrystals (with pentagonal symmetry, among others) lies between periodic and amorphous. In the modern theory of dynamical systems, the transfer to chaos includes a passage through smalls regions, which are seeds of chaos; in Hamiltonian systems, these regions are called stochastic webs and examples with five and seven-fold symmetries have been found.

Acknowledgements

We would like to thank Diego Rasskin-Gutman for pointing out the ideas of modularity. Technical support by Beatriz Millán is gratefully acknowledged. José Luis Aragón would like to thank DGAPA-UNAM (grant IN100310-3) and CONACyT (grant 50368 and 79641) for financial support.

References