Second allogeneic peripheral blood stem cell transplants with reduced-intensity conditioning

Guillermo J. Ruiz-Argüelles,*** David Gomez-Almaguer,*** Luz-del-Carmen Tarin-Arzaga,*** Amelia Morales-Toquero,* Olga G. Cantu-Rodríguez,*** Carlos Manzano*

* Centro de Hematología y Medicina Interna de Puebla.
** Laboratorios Clínicos de Puebla.
*** Hospital Universitario de Nuevo León.

ABSTRACT

In two institutions in México, twelve patients were given a second allogeneic stem cell transplantation, using the “Mexican” non-myeloablative preparative regimen. Eight had a malignant condition (six acute leukemias, one myelofibrosis and one myelodysplasia), eleven individuals were allografted twice from the same donor and in one case, cells from two different umbilical cords were used. The median time to conduct the second allograft after the first one was 6 months (range 1-41). The five patients who failed to engraft after the first transplant failed also to engraft after the second one; all of them had been heavily transfused. Only three patients were successfully rescued with the second transplant, two with acute leukemia and one with aplastic anemia. Seven patients are alive 10-41 months (median 35) after the second transplant, but only three (25%) remain disease-free. The 52-month overall survival (SV) of the patients is 58%, whereas the median overall SV has not been reached, being above 52 months. Conducting a second allograft may be useful to rescue some individuals relapsing after a first hematopoietic allograft.

INTRODUCTION

Allogeneic stem cell transplantation is widely used in the treatment of several malignant and non-malignant conditions; it is associated with a relatively low risk of disease recurrence.1 Second allogeneic stem cell transplantation (2-SCT) may be effective salvage therapy in some patients, after an initial either auto or allogeneic transplant;2-4 2-SCT are conducted as a result of either relapse of the disease2 or graft failure.3-4 Conventional transplant conditioning has a relatively high early trans-
and antimycotics were used until more than 500 granulocytes/ul were present. The products of the PBSC apheresis were infused as outpatients on days 0, 1 and 2.

Apheresis product studies

Enumeration of the total white blood, mononuclear (MNC) and CD34 positive cells was done by flow-cytometry in an EPICS Elite ESP apparatus (Coulter Electronics, Hialeah, FL), using the HPCA-2 anti-CD34 monoclonal antibody (Becton Dickinson, San José CA).

RESULTS

Patients

One hundred and eighty nine patients were given an NST using the Mexican preparative regimen in the period of the study; of these, twelve individuals were given a 2-SCT; all these patients could not afford an allograft using conventional, myeloablative conditioning. The table 1 depicts the salient features of these 12 patients. Eight patients had a malignant condition (six acute leukemias, one myelofibrosis and one myelodyplasia); eleven patients were allografted twice from the same donor and in one case, two different cord blood cells were used. In two cases (numbers three and eight) the patient was initially allografted with umbilical cord blood cells from a sibling and later on with peripheral blood stem cells from the same sibling, already grown.

First allografts

The five patients with non malignant conditions were transfusion-dependent when the allograft was conducted; four out of six patients with leukemia were in a complete remission (CR) and two had refractory forms of the disease. Five patients failed to engraft and seven patients relapsed 2 to 13 months after the first allograft, see table 1. All the patients who failed to engraft did not develop chimerism; the seven patients who engrafted became full chimeras 30-60 days after the allograft.

Second allografts

The median time to conduct the 2-SCT after the first one was 6 months (range 1-41). The five patients who failed to engraft after the first transplant failed also to engraft after the second one; all of...
them but two (patient 6, with myelofibrosis and patient 9, with myelodysplasia), had benign conditions and had been heavily transfused before the allografts. Interestingly, four out of these individuals are alive, receiving transfusions. The 100-day mortality after the 2-SCT was 42% (5 of 12 patients); in three instances as a result of failure to engraft and in two cases, both patients with acute lymphoblastic leukemia, as the result of refractoriness of the malignancy. The two patients (numbers 2 and 7) allografted with refractory forms of lymphoblastic leukemia achieved very short remissions after the first allograft and failed to engraft after the second one, dying 2 and 1 months after the re-graft (Table 1). Only three patients (numbers 4, 8 and 10) were successfully “rescued” with the 2-SCT; in two instances patients with a relapsed acute leukemia (patients 4 and 8) and in the other a patient with a relapsed aplastic anemia (patient number 10).

Seven of the twelve patients are alive 10-41 months (median 35) after the 2-SCT; however, only three of them (25%) remain disease-free. The 52-month overall survival (SV) of the patients is 58%, whereas the median overall SV has not been reached, being above 52 months. The relapse-free survival of the patients is 25% at 52 months. All the patients who failed to engraft did not develop chimerism; patients 4, 8 and 10 are full chimeras. Figure 1 includes these data.

Table 1. Salient features of the twelve patients who received a second allogeneic stem cell transplantation.

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Age/sex</th>
<th>Diagnosis, status</th>
<th>HSC source</th>
<th>Outcome, aGVHD</th>
<th>Remission (mos), cGVHD</th>
<th>Interval between transplants (mos)</th>
<th>HSC source</th>
<th>Outcome, aGVHD</th>
<th>Status, time (mos), cGVHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4/M</td>
<td>ALL, CR2</td>
<td>PB</td>
<td>CR, rel</td>
<td>13</td>
<td>16</td>
<td>PB</td>
<td>Ref</td>
<td>D, 2</td>
</tr>
<tr>
<td>2</td>
<td>21/M</td>
<td>ALL, ref</td>
<td>PB</td>
<td>CR, rel</td>
<td>2</td>
<td>4</td>
<td>PB</td>
<td>Ref, GI</td>
<td>D, 2</td>
</tr>
<tr>
<td>3</td>
<td>1/M</td>
<td>Thalassemia, TD</td>
<td>UCB</td>
<td>Failure</td>
<td>-</td>
<td>25</td>
<td>PB</td>
<td>Failure, TD</td>
<td>A, 37</td>
</tr>
<tr>
<td>4</td>
<td>49/F</td>
<td>AML-M2, CR1</td>
<td>PB</td>
<td>CR, rel</td>
<td>4</td>
<td>7</td>
<td>PB</td>
<td>CR, GI</td>
<td>A, 41, ltd</td>
</tr>
<tr>
<td>5</td>
<td>9/M</td>
<td>ALL, CR2</td>
<td>PB</td>
<td>CR, rel</td>
<td>4</td>
<td>5</td>
<td>PB</td>
<td>Failure</td>
<td>D, 6</td>
</tr>
<tr>
<td>6</td>
<td>47/F</td>
<td>Myelofibrosis, TD</td>
<td>PB</td>
<td>Failure</td>
<td>-</td>
<td>1</td>
<td>PB</td>
<td>Failure</td>
<td>D, 1</td>
</tr>
<tr>
<td>7</td>
<td>9/M</td>
<td>ALL, ref</td>
<td>PB</td>
<td>CR, rel</td>
<td>3</td>
<td>3</td>
<td>PB</td>
<td>Failure</td>
<td>D, 1</td>
</tr>
<tr>
<td>8</td>
<td>3/M</td>
<td>ALL, CR2</td>
<td>UCB</td>
<td>CR, rel</td>
<td>13</td>
<td>22</td>
<td>PB</td>
<td>CR, rel</td>
<td>A, 10</td>
</tr>
<tr>
<td>9</td>
<td>8/F</td>
<td>Myelodysplasia, TD</td>
<td>PB</td>
<td>Failure</td>
<td>-</td>
<td>41</td>
<td>PB</td>
<td>Failure, TD</td>
<td>A, 35</td>
</tr>
<tr>
<td>10</td>
<td>24/F</td>
<td>AA, TD</td>
<td>PB</td>
<td>CR, rel, GI</td>
<td>8, Ltd</td>
<td>9</td>
<td>PB</td>
<td>CR, GI</td>
<td>A, 52</td>
</tr>
<tr>
<td>11</td>
<td>2/M</td>
<td>PRCA, TD</td>
<td>PB</td>
<td>Failure</td>
<td>-</td>
<td>12</td>
<td>PB</td>
<td>Failure, TD</td>
<td>A, 12</td>
</tr>
<tr>
<td>12</td>
<td>1/F</td>
<td>Osteopetrosis, TD</td>
<td>UCB</td>
<td>Failure</td>
<td>-</td>
<td>5</td>
<td>UCB</td>
<td>Failure, TD</td>
<td>A, 16</td>
</tr>
</tbody>
</table>

HSC: hematopoietic stem cells, aGVHD: acute graft versus host disease, mos: months, cGVHD: chronic graft versus host disease, M: male; f: female, CR: complete remission; CR1 or CR2: first or second complete remission, TD: transfusion dependent, ref: refractory, AA: aplastic anemia, PRCA: pure red cell aplasia; PB: peripheral blood; UCB: umbilical cord blood, rel: relapse, D: death, A: alive; GI: grade I acute GVHD; Ltd: limited chronic GVHD.

An allogeneic 2-SCT for hematological diseases recurring after first transplant may be a reasonable treatment option in selected patients; however, identification of factors influencing outcome and mortality after second transplantation and determination of patients groups who best respond to this therapy have proven difficult. We have previously made comments on the salient features of the “Mexican” non-myeloablative preparative regimen to conduct

DISCUSSION

Figure 1. Overall survival after the second stem cell allograft of the 12 patients given two allotransplants using a non-myeloablative preparative regimen.
allogeneic stem cell transplantation. As most RIC regimens, the method relies mainly on the induction of a graft versus tumor effect, which is useful in some, but not all malignancies; in addition, the method has been shown to be useful to replace hematopoietic tissue in circumstances in which this is needed. In this cohort of patients, only two with a malignancy (numbers 4 and 8) could be rescued by the 2-SCT. In case 4 by means of inducing a graft versus leukemia effect using the same donor, with a reduced and shortened immunosuppressive schedule; this patient had relapsed of the myeloid leukemia four months after the initial allograft and could be rescued with the 2-SCT using the same sibling donor, remaining disease-free 41 months after the 2-SCT. The other patient was a boy with acute lymphoblastic leukemia in a second remission, who was initially grafted with umbilical cord blood cells from his sibling and, after another relapse, grafted with peripheral blood stem cells from the same sibling, 22 months old by then. Within patients with non-malignant conditions, patient number 10, with aplastic anemia, relapsed 8 months after the initial allograft and could be rescued with the 2-SCT of the same donor, by using a higher number of peripheral blood hematopoietic stem cells.

It has to be mentioned that the group of patients which we are hereby reporting is a highly selected one: included are individuals who lived enough after the first allograft in order to be re-allografted. By the same token, the prevalence of acute graft versus host disease (aGVHD) after the first allograft in this group of patients is very low (8%), this figure being substantially lower than that of the patients allografted using the “Mexican approach”, in which the prevalence of aGVHD is around 30%. This may be related to both the failures to engraft after the initial transplant and also to the relapse rate in this group of patients. After the first allograft, chronic GVHD was observed in 1 out of 5 patients who engrafted and were followed by more than 100 days, whereas it was recorded in 1 out of 3 patients after the 2-SCT; these figures are also lower than that observed in the whole group of patients grafted using our method, which is around 50%. Along the same line, the 100-day mortality after the 2-SCT in this cohort was 42%, a figure significantly higher than that found in patients allografted using the “Mexican” conditioning regimen, which is around 10%. It is clear that the differences observed between this subset of patients and the whole group of individuals allografted using our method stem from the selection of the patients who can be given a 2-SCT, selection which depends on features of both the disease and the patients, but which place these selected individuals in advantage as far as prognosis is concerned.

Despite the fact that the long-term disease-free SV in this group of patients given two consecutive stem cell allografts is rather poor (25%), the overall SV is acceptable (58% overall SV at 52 months), this figure being similar to that described by other authors conducting allogeneic 2-SCT. The overall SV figure could be related to the selection of patients as already discussed, but also to the low toxicity of the preparative regimen, which allows not only recovery of the endogenous hemopoiesis provided a graft failure occurs, but also repeated transplantation.

In conclusion, conducting a 2-SCT in a given patient may be useful to rescue some individuals relapsing after a first hematopoietic allotransplant. Despite the fact that the success rate of this therapeutic maneuver is relatively low, it may be offered to selected patients. Conducting the allografts with a RIC conditioning allows re-allografting, which may benefit some patients.

REFERENCES

Correspondence and reprint request:

Guillermo J. Ruiz-Argüelles MD.
Centro de Hematología y Medicina Interna de Puebla. 8B Sur 3710. 72530 Puebla, Pue., Phone: + 52 (222) 243-8100 Fax: + 52 (222) 243-8428 E-mail: gruiz1@clinicaruiz.com

Recibido el 5 de julio de 2005.
Aceptado el 9 de noviembre de 2005.