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RESUMEN

La esclerosis lateral amiotrófica (ELA) es la enfermedad degenerativa de las motoneuronas más común en los adultos. Se

caracteriza por la pérdida progresiva de motoneuronas que da como resultado un cuadro clínico complejo y, finalmente, la muerte.

En la presente revisión se presentan los hallazgos más recientes de la enfermedad. Menos de 10% de los pacientes correspon-

den a ELA familiar, asociado a varios loci de diversas funciones. De estos pacientes, más de 20% poseen mutaciones en el gen

codificante de la enzima Cu/Zn superóxido dismutasa (SOD1). La presencia de inclusiones neuronales y defectos en el plega-

miento de proteínas son comunes a todas las formas de ELA. La acumulación aberrante de neurofilamentos, la afectación del

transporte axonal, el desbalance oxidativo neuronal y la excitotoxicidad mediada por glutamato son algunos de los posibles

mecanismos que participan en la patogénesis de la enfermedad. El riluzol, un inhibidor de la liberación de glutamato, es la única

droga aprobada para el tratamiento de la ELA, prolongando la sobrevivencia en tres meses. Más de 30 ensayos clínicos se han

llevado a cabo con el fin de obtener nuevos tratamientos para la ELA, incluyendo antioxidantes, antiglutamatérgicos,

inmunomoduladores y factores de crecimiento, con resultados insatisfactorios. Actualmente, la terapia génica, el ARN de interfe-

rencia y la terapia con células madres forman parte de las estrategias en estudio. Es probable que la intervención simultánea de

varios eventos moleculares fisiopatológicos sea la estrategia más adecuada para alterar el curso de esta enfermedad.

Palabras clave: Esclerosis lateral amiotrófica, enfermedad de las motoneuronas.

Amyotrophic lateral sclerosis: an update

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative motor neuron disease in adults. It is characterized by

the progressive loss of motor neurons resulting in a complex clinical manifestation and finally, death. This review presents the

most recent findings about this disease. Less than 10 % of patients are familial ALS, associated to several loci of different

functions. From them, more than 20 % have mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) enzyme.

Neuronal inclusions and defects in protein folding are present in both forms of ALS. Aberrant accumulation of neurofilament,

defects in axonal transport, neuronal oxidative imbalance and glutamate excitoxicity are some of the possible mechanisms

involved in the disease pathogenesis. Riluzol, a glutamate inhibitor, is the only approved drug for ALS treatment, producing an

increase of 3 months in survival. More than 30 clinic trials have been carried out to obtain new treatments for ALS, including

antioxidants, glutamate inhibitors, immunomodulators and growth factors, all with failed results. Genetic therapy, interference

RNA and stem cell therapy are currently in study. Probably, the right strategy to follow must be the simultaneous intervention in

different molecular events to alter the disease progression.
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INTRODUCCIÓN

La esclerosis lateral amiotrófica (ELA) es la enfer-
medad degenerativa de las motoneuronas (MNs) más
común en adultos.1 Descrita por vez primera en 1869 por
el neurólogo francés Jean-Martin Charcot, la ELA ganó
mucha publicidad en el siglo pasado debido a que varias
celebridades la han padecido, como son los casos de la
estrella de beisbol Lou Gehrig, el actor británico David
Niven y el astrofísico Stephen Hawking.2

La ELA se caracteriza por una pérdida de la capaci-
dad y actividad motoras, debido a la degeneración de
neuronas a todos los niveles del sistema motor, incluyen-
do las MNs superiores en núcleos grises basales y corte-
za cerebral, e inferiores en las columnas grises de los cor-

dones medulares espinales y tallo cerebral.3 El cuadro clí-
nico es complejo y en su inicio se puede relacionar con las
regiones neurológicas involucradas: bulbar, cervical y lum-
bar. Los pacientes con inicio bulbar presentan disartria y
disfagia. La ELA de inicio cervical se presenta con sínto-
mas de extremidades superiores, unilateral o bilateral. La
debilidad proximal se puede presentar en tareas que
involucra movimientos del hombro (lavado del cabello,
peinarse, etc.), mientras que la distal puede manifestarse
en actividades que requieran el agarre en forma de pinza.
La ELA de inicio lumbar implica la degeneración celular
del asta anterior de la médula espinal lumbar, asociada
con signos y síntomas de las MNs inferiores en las pier-
nas como son la tendencia a tropezar y dificultad para
mantenerse de pie (debilidad proximal).4

EPIDEMIOLOGÍA Y GENÉTICA

En general, 75% de los casos se inician entre la cuarta
y sexta décadas de la vida y es más grave a mayor edad en
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receptor glutamatérgico ionotrópico tipo NMDA. Esto
sugiere que el desarrollo de esta forma de ELAe está
vinculado con la excitoxicidad mediada por glutamato.8,9

Entre 20-30% de los casos de ELAf son debidos a
mutaciones de la enzima Cu-Zn superóxido dismutasa-1
(SOD1).10 Se reportó por primera vez hace más de 15
años11 y hasta el momento se han identificado más de 120
mutaciones puntuales en este gen en pacientes con ELAf,
prácticamente todas ellas con herencia autosómica domi-
nante.12 Aunque muchos estudios de asociación genética
se han realizado para la ELAf, solamente unos pocos han
identificado los loci involucrados (Tabla 1).

En la mayoría de los casos de ELAf, los candidatos
genéticos no se han logrado demostrar en múltiples fami-
lias, o los genes mutados se asocian también con otras
enfermedades neurodegenerativas. Por tal motivo, estos
genes deben ser vistos como posibles factores de riesgo,
y no como causantes reales de la ELAf, sugiriendo vías
que pueden estar alteradas o jugar un rol en la patogénesis
de la enfermedad. Varias mutaciones genéticas represen-
tativas de este concepto se muestran en la tabla 2.

los afectados. La muerte sobreviene entre tres y cinco años
a partir de su aparición en 50% de los pacientes, sólo 10%
sobrevive 10 años o más.5 Aproximadamente entre 5 y
10% de los casos corresponden a ELA Familiar (ELAf),
y los restantes corresponden a ELA Esporádica (ELAe).
La ELAf usualmente muestra un patrón de herencia
autosómico dominante, aunque se ha descrito también
transmisión autosómica recesiva, de presentación más tem-
prana en la vida, como, por ejemplo, en poblaciones consan-
guíneas del norte de África. Ambas formas son indistinguibles
sobre la base de criterios clínicos y patológicos.6

En general, la incidencia anual de la ELAe se encuentra
entre 1.5 y 2.5 por 100,000 individuos, con una prevalen-
cia de alrededor de 6/100,000. Es ligeramente más fre-
cuente en hombres, con un radio hombre/mujer de 1.5.4,7

Existe una forma de ELAe exclusiva del Pacífico occi-
dental, afectando a las personas de la etnia Chamorro
(Islas Marianas). Como parte de su dieta tradicional, es-
tos individuos ingieren el vegetal Cycas circinalis, el cual
acumula un tóxico de origen cianobacteriano, la beta-N-
metilamino-L-alanina, que actúa como un agonista del

Tabla 1
Variantes genéticas de la ELA Familiar4

Variedad Gen Locus Herencia Función

involucrado

ELA1 SOD1: Cu-Zn 21q22.1 Autosómica Eliminar los aniones superóxido. Más de 120 mutaciones

superóxido dominante descritas, en su mayoría son puntuales, y se distribuyen

dismutasa (AD) en los 5 axones del gen. Pueden afectar el sitio activo,

el plegamiento o la estabilidad de la proteína.13

ELA2 ALS2: Alsina 2q33 Autosómica Factor intercambiador de guanina para la GTPasa RAB5A,

recesiva reguladora de la endocitosis. Se han descrito siete mutaciones

(AR) diferentes que producen una proteína truncada, sugiriendo

una  pérdida de función.14

ELA3 Desconocido 18q21 AD Desconocida

ELA4 SETX: 9q34 AD Posible función: helicasa de ARN y ADN con implicación en el

senataxina procesa-miento del ARN y reparación del ADN.15

ELA5 Desconocido 15q15.1-q21.1 AR Desconocida

ELA6 Desconocido 16q12.1-q12.2 AD Desconocida

ELA7 Desconocido 20pter AD Desconocida

ELA8 VAPB 20q13.3 AD Tráfico vesicular en el Retículo Endoplasmático hacia el

Aparato de Golgi. La mutación P56S induce un cambio en la

localización intracelular de la proteína hacia otros

compartimentos. Provoca una ELA de inicio temprano y

progresión lenta, con tremor inusual.16

ELA10 DCTN1: 2p13 AD Transporte axonal retrógrado de vesículas y organelos,

dinactina 1 asociación con microtúbulos y dineína. Se han identificado tres

mutaciones en pacientes con ELA.17
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PATOGÉNESIS

Entre las características patológicas de la ELA se en-
cuentran el engrosamiento en la zona proximal de los
axones motores debido al entrecruzamiento anormal y
desorientación de los neurofilamentos (NFs), las inclusio-
nes neuronales citoplasmáticas similares a cuerpos de
Lewy, la fragmentación del aparato de Golgi y la degene-
ración axonal walleriana.25 Se han propuesto numerosas
hipótesis para explicar el inicio y la progresión de la ELA,
incluyendo la agregación de proteínas, la excitoxicidad
mediada por glutamato, la disfunción mitocondrial, el estrés
oxidativo, la neuroinflamación, la apoptosis y la disrupción
del transporte axonal.26 Sin embargo, no se ha logrado
definir un mecanismo etiológico que unifique todas las
evidencias, y es posible que la enfermedad progrese ha-
cia los estadios finales a partir de causas diversas. A con-
tinuación se exponen algunas evidencias relacionadas fun-
damentalmente con el estrés oxidativo, la excitotoxicidad
y el papel que juega la acumulación de los neurofilamentos
como característica patológica esencial de la ELA.

PAPEL DE LA SOD1

La SOD1 cataliza la conversión del anión superóxido
(O

2

-) en oxígeno molecular (O
2
) y peróxido de hidrógeno

(H
2
O
2
). Es una enzima homodimérica ubicua y cada

monómero une un ion de zinc y de cobre. El zinc juega un
papel en la estabilidad estructural de la enzima, mientras
que el cobre participa en el mecanismo catalítico. Las
evidencias sugieren que la toxicidad mediada por SOD1

no es debida a una pérdida de su función, sino a una di-
versificación en las propiedades de la enzima.8 Se han
propuesto dos hipótesis para explicar este efecto. Una de
ellas plantea que las SOD1 mutantes pliegan incorrecta-
mente oligomerizando en complejos de alto peso molecular
que finalmente provocan la muerte de las MNs.27 La se-
gunda hipótesis plantea que las SOD1 mutantes adquie-
ren propiedades aberrantes catalizando reacciones redox
que dañan sustratos críticos para la viabilidad neuronal.14

ESTRÉS OXIDATIVO

Se ha observado que el sistema nervioso central es más
susceptible al daño celular debido a la producción de espe-
cies reactivas del oxígeno y del nitrógeno que otros tejidos.
La aparición de productos oxidativos indicadores del daño en
proteínas, el ADN y los lípidos ha sido reportada en pacien-
tes con ELA, tanto en médula espinal como en otras regio-
nes del sistema nervioso central.28 Tal es el caso de niveles
incrementados de 8-hidroxi-2’-deoxiguanosina (8-OHdG,
marcador de daño al ADN), hemoxigenasa-1 (proteína mo-
dificadora de malondialdehído),29,30 y de 3-nitrotirosina.31 Si-
milares resultados se obtuvieron en el modelo de ratón
transgénico de sobreproducción de SOD1 mutada.32,33 La
administración de antioxidantes en este modelo ha probado
ser beneficiosa ya sea retrasando el inicio de la enfermedad,
prolongando la supervivencia o ambas, como por ejemplo el
extracto de la planta Gingko biloba.34

Varios estudios han abordado la relación entre el ries-
go a padecer ELA y la exposición ambiental a metales.35

Los niveles de cobre tienden a aumentar a medida que

Tabla 2
Genes de susceptibilidad para la ELA

Gen involucrado Locus Función

ANG: angiogenina 14q11.2 RNAasa con actividad angiogénica importante en varios tejidos, incluyendo el

sistema nervioso, donde pudiera representar un  inductor de la neuroneovascularización.

Se ha confirmado la asociación con ELA en poblaciones de Irlanda y Escocia.18,19

VEGF: factor de 6p12 Citoquina que controla el crecimiento de nuevos vasos sanguíneos. En el sistema

crecimiento vascular nervioso posee actividad protectora. Sujetos homocigóticos para algunos haplotipos de

endotelial la secuencia promotora del gen VEGF tienen mayor riesgo de padecer ELA.20

SMN: proteína de 5q12.2-q13.3 Participa en el procesamiento del ARN. Se asocia con la degeneración de las MNs en la

sobrevivencia Atrofia Espinal Muscular. Aquellos genotipos que producen un decremento

motoneuronal espinal en SMN se relacionan con una mayor susceptibilidad a la ELA.21

NF-H: neurofilamento 22q12.2 Forma parte del citoesqueleto neuronal. Participa en el transporte axonal.

subunidad pesada Las deposiciones de neurofilamentos en soma y axón proximal son características

de la ELA. Se ha observado que varias mutaciones en el gen del NF-H se

relacionan con la enfermedad.22, 23

CHMP2B 2p11.2 Participa en el transporte intracelular de vesículas. Una mutación heterocigótica en

el exón 6 del gen codificante ha sido asociada con la ELA.24
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progresa la enfermedad, indicando una desregulación en
su metabolismo y favoreciendo la generación del estrés
oxidativo. El empleo de queladores de cobre, como el
dietiltiocarbamato, la D-penicilamina y la batocuproína, ha
mostrado efectos beneficiosos tanto in vitro como in
vivo.36,37

EXCITOTOXICIDAD

Una de las primeras teorías propuesta como mecanis-
mo patogénico de la ELA fue la excitotoxicidad mediada
por glutamato. Los niveles suprafisiológicos de este
neurotransmisor inducen el influjo de calcio al interior
neuronal, el cual activa cascadas de señalización que
finalmente conllevan a la muerte celular. Se han observa-
do niveles incrementados de este neurotransmisor en el
líquido cefalorraquídeo de pacientes con ELA.38 Este in-
cremento puede ser el resultado de una afectación en la
recaptación del neurotransmisor, que a su vez puede pro-
vocar la inactivación o pérdida de sus transportadores.
Más de la mitad de los pacientes con ELAe muestran una
pérdida funcional dramática del transportador de glutamato
EAAT2, que puede ser el resultado de un procesamiento
aberrante del ARNm en estos pacientes.39,40 Por otro lado,
se ha demostrado que el tratamiento con antagonistas del
receptor de glutamato tipo AMPA en el ratón transgénico
para SOD1 mutante puede prolongar su supervivencia.41

Sin embargo, se han cuestionado los mecanismos
excitotóxicos como iniciadores de la patología porque se
vuelven relevantes tardíamente en la enfermedad.

NEUROFILAMENTOS

Un signo patológico temprano de ambas formas de la
ELA son los esferoides axonales e inclusiones en el
pericarion motoneuronal compuestos por agregados de
neurofilamentos (NFs) y periferina.42 Los NFs y la
periferina se expresan exclusivamente en tejido neuronal.
Pertenecen a la familia de los filamentos intermedios (FIs,
diámetro entre 10-12 nm, intermedio entre los microtúbulos,
de 23-25 nm, y los microfilamentos, de 5-8 nm), que está
representada por más de 70 genes diferentes clasificados
en cinco tipos sobre la base de la homología de secuen-
cia.43 Los NFs están compuestos por 3 subunidades: NF-
L (68 kDa), NF-M (95 kDa) y NF-H (115 kDa) con una
estequiometría de 4 : 2 : 1 en ese orden.44 Los NFs son
esenciales para el transporte de cargas dentro del axón.
El estado de mayor fosforilación del dominio C-terminal
de las subunidades NF-H y NF-M determina un
enlentecimiento del transporte e incremento del calibre
axonal, en el cual participan las proteínas motoras dineína
(transporte retrógrado) y kinesina (transporte

anterógrado).45,46 Alrededor del 1 % de los casos de ELAe
está asociado con mutaciones en el gen codificante del
NF-H.22,47,48 Se ha demostrado la localización aberrante
de NFs hiperfosforilados tanto en cultivos primarios de
MNs tratadas con glutamato,49 como en ratones
transgénicos para SOD1, y la afectación consecuente del
transporte axonal.50

Por otro lado, la periferina es capaz de autoensamblarse
para formar homopolímeros filamentosos, y también pue-
de asociarse con los NFs, coexistiendo en distintos tipos
neuronales, incluyendo las MNs espinales.25 La sobre-
expresión de periferina causa la agregación intraespinal
de esta proteína y la degeneración selectiva de MNs, sien-
do el único FI neuronal que produce este efecto en mode-
los transgénicos.51 Aunque normalmente la periferina
muestra bajos niveles de expresión en las MNs, se ha
observado un incremento de estos niveles en pacientes
con ELA y su presencia en las inclusiones
motoneuronales.52,53 Asimismo, se han identificado algu-
nas mutaciones en el gen codificante de la periferina rela-
cionadas con casos de ELAe.54

ESTRATEGIAS

TERAPÉUTICAS PARA LA ELA

A pesar de los grandes avances logrados en el estudio de
los eventos moleculares y celulares que subyacen en el de-
sarrollo de la ELA, aún no se han obtenido drogas efectivas
para el tratamiento de la enfermedad, con excepción del
riluzol. Este compuesto es un inhibidor de la liberación de
glutamato que prolonga 3 meses la vida de los pacientes con
ELA.55,56 Se han llevado a cabo más de 30 ensayos clínicos
que incluyen compuestos antioxidantes, anti-glutamatérgicos,
moduladores del sistema inmune y factores de crecimiento,
con resultados insatisfactorios (Tabla 3).57

Entre las nuevas estrategias terapéuticas para la ELA
se encuentran la terapia génica y celular. El empleo del
ARN de interferencia (ARNi) para disminuir o abolir la
expresión de un gen específico ha dado resultados pro-
metedores en modelos experimentales. Por ejemplo, se
ha demostrado que la inhibición de la expresión de SOD1
mediante terapia génica con ARNi en ratones transgénicos
para ese gen, ha logrado mejorar la supervivencia de MNs
en la médula espinal, así como un retraso en el inicio de
los síntomas y mejoría en la actividad motora.58,59 Por otro
lado, también se han empleado vectores virales como ve-
hículo de expresión de factores tróficos en modelos de
ELA, como es el caso del GDNF (Factor Neurotrófico
Derivado de la Glia)60 y el IGF-1,61 este último mostrando
una eficacia terapéutica significativa. La terapia celular
permite reemplazar células perdidas o proveer un soporte
funcional a las células dañadas para prevenir su degene-
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ración posterior. En la ELA, la sustitución de las MNs
perdidas es casi improbable debido al tiempo requerido
para el crecimiento axonal y la reinervación muscular, y
la rápida progresión de la enfermedad. Las investigacio-
nes se han enfocado en la obtención de células de soporte
para proteger a las MNs que permanecen vivas. Entre
ellas podemos mencionar las células madres neuronales
progenitoras,62 las células derivadas de una línea de
teratocarcinoma humano63 y de células de Sertoli,64 así
como células sanguíneas de cordón umbilical humano.65

Es posible que las discrepancias entre los estudios
preclínicos y clínicos de la ELA se deban a las limitacio-
nes en los modelos in vitro e in vivo de la enfermedad.
Las diferencias fisiológicas, anatómicas y genéticas entre
humanos y ratones impiden la extrapolación precisa de la
dosis y la farmacocinética. Los ratones transgénicos para
SOD1 mutante han sido usados ampliamente en los estu-
dios preclínicos. Estos candidatos pudieran funcionar en
los casos de ELA asociados a defectos en SOD1, pero no
en el resto de los pacientes que constituyen la mayoría.66

CONCLUSIONES

La ELA es una enfermedad multifactorial donde in-
tervienen diferentes mecanismos bioquímicos, varios genes
y diversos tipos celulares. Los candidatos terapéuticos que
ataquen solamente a uno de esos mecanismos pudieran
no ser suficientes para alterar el curso de la enfermedad,
siendo preferible la intercepción simultánea en múltiples
aspectos de la patogénesis.
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Tabla 3.
Algunos ensayos clínicos llevados a cabo para la ELA

Droga Acción

BDNF * Neurotrofina
CNTF * Neurotrofina
Creatina Estabiliza la función mitocondrial
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