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SUMMARY

Dementias are progressive and neurodegenerative neuropsychiatric 
disorders, with a high worldwide prevalence. These disorders affect 
memory and behavior, causing impairment in the performance of dai-
ly activities and general disability in the elders. Cognitive impairment 
in these patients is related to anatomical and structural alterations 
at cellular and sub-cellular levels in the Central Nervous System. In 
particular, amyloid plaques and neurofibrillar tangles have been de-
fined as histopathological hallmarks of Alzheimer’s disease. Likewise, 
oxidative stress and neuroinflammation are implicated in the etiology 
and progression of the disease.

Neuronal precursors from human olfactory neuroepithelium 
have been recently characterized as an experimental model to iden-
tify neuropsychiatric disease biomarkers. Moreover, this model not 
only allows the study of neuropsychiatric physiopathology, but also 
the process of neurodevelopment at cellular, molecular and pharma-
cological levels.

This review gathers the evidence to support the potential thera-
peutic use of melatonin for dementias, based on its antioxidant prop-
erties, its anti-inflammatory effect in the brain, and its ability to in-
hibit both tau hyper-phosphorylation and amyloid plaque formation. 
Furthermore, since melatonin stimulates neurogenesis, and promotes 
neuronal differentiation by inducing the early stages of neuritogenesis 
and dendrite formation, it has been suggested that melatonin could be 
useful to counteract the cognitive impairment in dementia patients.

Key words: Melatonin, dementia, biomarkers, neuroepithelium, 
neuritogenesis.

RESUMEN

Las demencias son enfermedades neuropsiquiátricas, progresivas, 
neurodegenerativas y con una alta prevalencia a nivel mundial. Ocu-
pan uno de los primeros lugares como enfermedades que causan 
incapacidad en los adultos mayores. En estos pacientes el Sistema 
Nervioso Central presenta alteraciones anatómico-estructurales a ni-
vel celular y subcelular que se asocian con deficiencias cognitivas. En 
particular, en la enfermedad de Alzheimer se han caracterizado mar-
cadores histopatológicos como las placas amiloides y las marañas 
neurofibrilares. Se sabe que el estrés oxidativo y la neuroinflamación 
participan en la etiología y el desarrollo de la enfermedad. Reciente-
mente se caracterizó a los precursores neuronales del neuroepitelio 
olfatorio humano como un modelo experimental adecuado para iden-
tificar biomarcadores de rasgo y para estudiar la fisiopatología de 
diversas enfermedades neuropsiquiátricas, así como el proceso del 
neurodesarrollo, a nivel celular, molecular y farmacológico. En este 
trabajo se presenta la evidencia que sustenta que la melatonina puede 
ser útil en el tratamiento de las demencias, por su capacidad antioxi-
dante, por su efecto anti-inflamatorio, así como por el efecto inhibidor 
de la hiperfosforilación de la proteina tau y de la formación de placas 
amiloides. Además, al estimular la formación de nuevas neuronas, la 
neuritogénesis en sus etapas tempranas y la formación de dendritas, 
la melatonina podría contribuir a contrarrestar la pérdida de las fun-
ciones cognitivas que se observa en estos padecimientos.

Palabras clave: Melatonina, demencia, biomarcadores, neuroepi-
telio, neuritogénesis.

1	 Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz.
2	 Dirección de Servicios Clínicos. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz.

Correspondencia: Dra. Gloria Benítez-King. Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría 
Ramón de la Fuente Muñiz. Calz. México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, 14370 México DF. Tel. (52-55) 4160-5097. Fax.(52-55) 5513-3722. 
E-mail: bekin@imp.edu.mx

Las demencias son enfermedades neurodegenerativas que 
afectan, a nivel mundial, a cerca de 30 millones de personas.1,2 
Ocupan el sexto lugar entre las enfermedades mentales que 
causan incapacidad y cada año se presentan 4.6 millones de 
casos nuevos.3 La enfermedad de Alzheimer (EA) es la forma 

más común de las demencias y afecta principalmente a los 
adultos mayores. Las tasas de prevalencia según la edad osci-
lan entre 5 y 8% en las personas que tienen arriba de 65 años, 
15 a 20% en personas con una edad por arriba de los 75 años y 
25 a 50% en personas con una edad mayor a los 85 años.4,5
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Los pacientes con EA presentan alteraciones en la cog-
nición (agnosia), en el ciclo sueño-vigilia y en la habilidad 
para realizar actividades cotidianas (apraxia), entre otros 
síntomas.4,6 En el Sistema Nervioso Central (SNC) se obser-
van alteraciones anatómico-estructurales, celulares y subce-
lulares.7,8 Con técnicas de resonancia magnética transcraneal 
y tomografía de emisión de positrones se observa, a nivel 
macroscópico, atrofia cerebral generalizada9 y la pérdida 
gradual de la materia gris formada por núcleos neuronales 
y dendritas.10 La atrofia involucra al sistema límbico (hipo-
campo, amígdala y giro parahipocampal), a la corteza ce-
rebral, a la corteza entorrinal, a la corteza de asociación y 
otras regiones subcorticales que incluyen el sistema colinér-
gico del prosencéfalo basal, el cuerpo estriado, el tálamo y 
el cerebelo, así como los lóbulos frontal, temporal, parietal y 
occipital.9,11 Las alteraciones en las regiones cerebrales están 
relacionadas con las deficiencias cognitivas que se presen-
tan, tales como las afasias, que están causadas por el daño 
del área de Broca y/o de Wernicke en el hemisferio izquier-
do y el fascículo arqueado que conecta ambas áreas; las 
apraxias, que están causadas por lesiones en el área de Bro-
ca y del cuerpo calloso, así como de las áreas de asociación 
parietal-frontal, la corteza motora y otras áreas asociadas al 
movimiento, según el tipo de apraxia.9 Además, los pacien-
tes con EA tienen reducida la actividad neuronal en áreas 
de la corteza prefrontal y en todas las áreas de la formación 
hipocampal que incluyen al subiculum y que están asociadas 
con las deficiencias en la memoria episódica verbal.9

Una característica patológica que se presenta en las de-
mencias es la disminución del volumen del hipocampo.11,12 
Ésta se ha asociado con la pérdida neuronal en el hilus y en 
la región del cornus amonis CA1, entre otras.13,14 También se 
ha relacionado con la pérdida de axones y la disminución en 
el número de dendritas en la región CA1,15-17 así como con 
una reducción en las extensiones de las mismas,18 en el nú-
mero de terminales dendríticas y en la longitud total de las 
dendritas en el giro parahipocampal.19 Esta disminución de 
la estructura de las dendritas reduce la cantidad de espinas 
y en consecuencia el ensamble de uniones sinápticas y de 
nuevos circuitos neuronales que participan en la plasticidad 
neuronal y la excitabilidad sináptica, inherentes a los proce-
sos de memoria y aprendizaje.7,11,15,20,21 En particular, en los 
pacientes con EA se ha observado la reducción de contactos 
sinápticos en la neocorteza y en la capa molecular del giro 
dentado del hipocampo, así como la pérdida de las aferen-
cias provenientes de las neuronas localizadas en la corteza 
entorrinal.22-24

Biomarcadores de la demencia
tipo Alzheimer

Aunados a los cambios estructurales a nivel cerebral, se han 
descrito varios marcadores biológicos de rasgo en el cere-

bro de pacientes con el diagnóstico de EA. Entre éstos se 
encuentra el estrés oxidativo y se ha demostrado que los pa-
cientes con EA tienen niveles elevados de radicales libres en 
la corteza frontal25 mediante técnicas de mapeo cerebral y 
resonancia magnética transcraneal. También los niveles de 
radicales libres se encuentran elevados en el plasma de es-
tos pacientes y su capacidad antioxidante está disminuida.26 
Se ha descrito, además, que el estrés oxidativo desempeña 
un papel crucial en la EA ya que produce una disminución 
en las densidades sinápticas, la reducción de factores neu-
rotróficos como el NGF y el BDNF27 y causa el colapso del 
citoesqueleto neuronal28 que en su conjunto causa la atrofia 
cerebral generalizada. Asimismo, los radicales libres y las 
especies reactivas de oxígeno y nitrógeno (ROS/NOS) acti-
van cascadas de señalización asociadas con la inflamación 
que, como se describe posteriormente, también tiene un pa-
pel importante en la etiología de los padecimientos neuro-
degenerativos.

Las placas amiloides difusas o neuríticas, también 
llamadas placas seniles, han sido consideradas como otro 
biomarcador de la EA. Se han descrito en la neocorteza 
y en el hipocampo durante las etapas tempranas de la 
enfermedad.29 Estas placas están formadas por la agrega-
ción de péptido beta amiloide (Aβ) en la matriz extrace-
lular del cerebro.

Las marañas neurofibrilares constituyen otro marcador 
histopatológico9,11 y se consideran uno de los principales cri-
terios de diagnóstico post-mortem de la EA. Están formadas 
por agregados de filamentos helicoidales pareados (FHP) 
compuestos por la proteína tau hiperfosforilada. Ésta es una 
proteína asociada a los microtúbulos que se encuentran en 
los axones y que participan en el transporte axonal anteró-
grado. Al unirse a los microtúbulos, los estabiliza y actúa 
también promoviendo la polimerización de la tubulina.30 La 
fosforilación excesiva de la tau causa la disociación de esta 
proteína de los microtúbulos y, en consecuencia, la despo-
limerización de la tubulina así como la pérdida de la asi-
metría morfofuncional de las neuronas,31 la reducción del 
número de contactos sinápticos y la interrupción del trans-
porte axoplásmico.32

Actualmente se acepta que en la etiología de los pa-
decimientos neurodegenerativos en general, y de la EA en 
particular, participa un componente de neuroinflamación 
crónica. En este sentido se ha demostrado que la microglia y 
los astrocitos activados se acumulan y se asocian a las placas 
seniles en el cerebro de estos pacientes, así como con una 
mayor cantidad de citocinas pro-inflamatorias, quimiocinas, 
proteínas del complemento, especies reactivas de oxígeno 
y nitrógeno y otros mediadores de inflamación.33,34 La ac-
tivación de la microglia se produce por la presencia de los 
depósitos de Aβ y es, en principio, una respuesta protec-
tora, ya que está dirigida a la eliminación de dichos depó-
sitos por fagocitosis.35,36 En condiciones normales existe un 
equilibrio entre los procesos pro- y anti-inflamatorios que 
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permite reparar el tejido y preservar la función neuronal. 
En los padecimientos neurodegenerativos este equilibrio 
se rompe y se desencadena un proceso crónico en el que se 
promueve el reclutamiento y la activación de la microglia y 
los astrocitos que producen diversos mediadores pro-infla-
matorios y, a su vez, favorecen la activación de sistemas en-
zimáticos asociados a la inflamación.33 En respuesta al estrés 
celular, las neuronas, los astrocitos y el endotelio vascular 
generan más Aβ, lo que perpetúa el proceso.33,37,38 La pre-
sencia de estos factores bioquímicos y celulares, aunada a la 
depleción de los mecanismos antioxidantes tisulares y a la 
pérdida de las funciones neuroprotectoras de los astrocitos, 
como la homeostasis del glutamato,39 contribuyen a generar 
un microambiente en donde se favorece la excitotoxicidad 
y la neurodegeneración, la retracción de las sinapsis con el 
consecuente déficit cognitivo, y, eventualmente, la muerte 
neuronal. Por otra parte, en los últimos años se ha propues-
to también que la inflamación sistémica juega un papel im-
portante en la patogénesis de las demencias y se ha encon-
trado asociación entre los niveles elevados de marcadores 
inflamatorios periféricos como la proteína C-reactiva y la 
IL-6 séricas y un riesgo moderado de padecer demencia.40,41 
A pesar de la gran cantidad de evidencia que existe en este 
tema, los mecanismos celulares y moleculares implicados en 
la neuroinflamación crónica asociada a las demencias son 
complejos y no han sido elucidados por completo. Asimis-
mo, las estrategias terapéuticas que se han desarrollado en 
este ámbito, principalmente la administración de anti-in-
flamatorios no esteroideos (AINEs), han tenido resultados 
parciales en términos de prevención y de retraso en la pro-
gresión de la enfermedad, sin embargo no han sido eficaces 
en las etapas avanzadas de la misma.42

Modelos experimentales utilizados
en el estudio de las demencias

Los estudios para entender la fisiopatología de la EA se han 
realizado en diversos modelos animales y en cultivos celula-
res y organotípicos.43,44 Los estudios en roedores permitieron 
establecer que las lesiones en el hipocampo producidas por 
agentes químicos o mecánicos se asocian con deficiencias en 
la memoria espacial,45 en tanto que el modelo de cultivos or-
ganotípicos de esta estructura cerebral ha permitido definir 
las conexiones nerviosas y los núcleos neuronales involu-
crados en la memoria y la cognición así como abordar el es-
tudio de fármacos neuroprotectores y neuroregeneradores 
potencialmente útiles para el tratamiento de la EA.46-48 Las 
rebanadas de hipocampo en cultivo permanecen viables por 
varias semanas, conservan su arquitectura tridimensional 
así como la integridad y funcionalidad de los circuitos neu-
ronales49 y en ellas se pueden evaluar topológicamente los 
efectos farmacológicos, tanto en neuronas adultas como en 
las nuevas neuronas que se forman en el giro dentado.47,50-52 

En este modelo se han probado los efectos neurotóxicos del 
Aβ sobre la agregación de la proteína tau y el efecto protec-
tor de la melatonina (MEL) sobre la neurotoxicidad induci-
da por el péptido Aβ25-35.44

Además de estos modelos experimentales, en años re-
cientes se empezó a utilizar el neuroepitelio olfatorio (NEO) 
para estudiar posibles marcadores moleculares de la EA.53-55 
Este epitelio contiene las neuronas más externas del organis-
mo, por estar colocadas en una región periférica en contacto 
con el medio ambiente y por lo tanto accesibles para su ob-
tención y aislamiento.56-58 Los primeros estudios de caracteri-
zación de biomarcadores se realizaron en biopsias del NEO 
obtenidas post-mortem. En una cohorte de 79 pacientes con 
diagnóstico de EA se describió un incremento en la cantidad 
de proteína tau-FHP, de agregados citoplasmáticos de Aβ y 
de alfa sinucleína como potenciales marcadores proteicos de 
la enfermedad.59 El NEO es un tejido análogo al tubo neural 
que da origen al SNC y está constituido por varios tipos de 
células: las basales, las subtentaculares, las multipotenciales, 
los precursores neuronales y las neuronas sensoriales.60,61 
Estas últimas se regeneran continuamente por la prolifera-
ción de las células multipotenciales que se diferencian para 
convertirse en neuronas sensoriales olfatorias.60,61 Reciente-
mente desarrollamos un método para aislar las células del 
NEO de pacientes neuropsiquiátricos ambulatorios median-
te la exfoliación no invasiva de la cavidad nasal y la imple-
mentación de las condiciones de cultivo para seleccionar, 
propagar, diferenciar y criopreservar a los precursores neu-
ronales.62 Las células de linaje neuronal criopreservadas en 
bancos que posteriormente se descongelaron y se volvieron 
a cultivar, conservaron sus propiedades electrofisiológicas 
y fenotípicas62 y fueron capaces de desarrollar los arreglos 
del citoesqueleto característicos de la neuritogénesis.62 Estos 
datos sugieren que los precursores neuronales obtenidos de 
la cavidad nasal de los pacientes neuropsiquiátricos consti-
tuyen un modelo experimental adecuado para investigar la 
fisiopatología de la EA, los aspectos celulares y molecula-
res del neurodesarrollo tales como la diferenciación de las 
neuritas en axones y dendritas, así como diversas acciones 
farmacológicas sobre este proceso, y para la caracterización 
de biomarcadores de rasgo.62

La melatonina como
una alternativa en el tratamiento

de las demencias

En los últimos años se ha propuesto que la MEL (5-metoxy-
N-acetiltriptamina) puede ser útil en el tratamiento de la EA 
(para una revisión: Rosales et al., 2012).63 La administración de 
esta indolamina a sujetos que padecen EA causa una mejoría 
en los trastornos de los ritmos circadianos64-66 así como una re-
ducción en la disfunción cognitiva.67 Los estudios preclínicos 
apoyan este concepto ya que la MEL actúa como un captador 
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de radicales libres y por lo tanto reduce el estrés oxidativo y la 
apoptosis.68 En particular en las neuronas del hipocampo y en 
neuronas en cultivo la hormona disminuye los niveles de lipo-
peroxidación causados por la 1-metil-4-fenil-1,2,3,6-tetrahidro-
piridine (MPTP),69 la 6-hidroxidopamina (6-OHDA)70 y el ácido 
kaínico.71 También la MEL protege al citoesqueleto neuronal 
de la desorganización estructural que producen los radicales 
libres.28 Asimismo, en cultivos de microglia estimulados con el 
péptido Aβ1-42, el pre-tratamiento con MEL reduce el ensam-
blaje y la actividad de la NADPH oxidasa y la consecuente pro-
ducción de anión superóxido y ROS derivadas del mismo.72

El ácido ocadáico (AO) aumenta el estrés oxidativo73 e 
inhibe a las fosfatasas PP1 y PP2A,74 lo que incrementa la 
hiperfosforilación de la proteína tau, la formación de FHP 
y la retracción del citoesqueleto alrededor del núcleo.75 La 
MEL, en concentraciones semejantes a las que circulan en 
el plasma y en el líquido cefalorraquídeo (1 y 100 nM, res-
pectivamente) bloquea, previene y revierte el incremento en 
la lipoperoxidación y la apoptosis inducidas por el AO en 
las células N1E-115, así como el colapso del citoesqueleto, el 
que permanece organizado en el citoplasma y en las neuritas 
en presencia del AO y MEL. Resultados semejantes se obtu-
vieron cuando se probaron otros agentes oxidantes como el 
peróxido de hidrógeno y el haloperidol.28,76,77 Por otro lado, 
la reducción de los niveles circulantes de MEL producida 
por la remoción quirúrgica de la glándula pineal (pinealec-
tomía) se ha asociado con altos índices de estrés oxidativo, 
disminución de la memoria y desorganización del citoes-
queleto en el hipocampo de la rata.78-81 El tratamiento por 
una semana con MEL administrada intraperitonealmente 
revirtió estos efectos y los animales pinealectomizados e in-
yectados con MEL mostraron valores semejantes al grupo 
control en la cantidad de microtúbulos y microfilamentos 
determinados en la fracción citoesqueleto-membranal,81 lo 
que sugiere que el grado de estrés oxidativo, la organización 
del citoesqueleto y la cognición están relacionados.

La melatonina reduce
los niveles de tau fosforilada

Otro de los cambios moleculares que bloquea la MEL es la 
hiperfosforilación de la proteína tau, que se presenta aso-
ciada al estrés oxidativo. En las células de neuroblastoma 
N1E-115 previamente incubadas con 50 nM de AO, 100 µM 
de peróxido de hidrógeno o 100 µM de haloperidol, la MEL 
(1 o 100 nM) disminuye en un 100% la cantidad relativa 
de tau fosforilada en la serina 404.77,82 Además, en modelos 
animales de EA, como los ratones 3xTg-AD, también se ha 
demostrado que la MEL disminuye los niveles de tau hiper-
fosforilada así como los síntomas conductuales similares a 
los de la demencia tales como la ansiedad y la pérdida de la 
conducta exploratoria.83 De manera análoga se ha descrito 
que en animales pinealectomizados hay un incremento en 

los niveles de tau hiperfosforilada asociados con un detri-
mento de la cognición.80

La melatonina estimula
la neuritogénesis temprana

y la dendritogénesis

Además del efecto antioxidante, la MEL actúa como un 
modulador de la organización del citoesqueleto y, en con-
secuencia, del desarrollo de la polaridad morfofuncional en 
las neuronas. Este proceso implica la diferenciación de dos 
compartimentos celulares: el dominio axonal y el somato-
dendrítico.84 En cultivo, este proceso se inicia después de 
desprender a las neuronas del sustrato y de la resiembra. Las 
células redondas desarrollan una o múltiples neuritas que 
presentan conos de crecimiento en su extremo más distal. 
Posteriormente, una de las neuritas se alarga y se diferencia 
en el axón. Las neuritas cortas restantes se diferencian en 
dendritas y finalmente se lleva a cabo la polarización funcio-
nal y la formación de las sinapsis.84 Se ha demostrado que la 
calmodulina (CaM) cinasa II participa en la formación de las 
neuritas y de las dendritas mediante la fosforilación de las 
MAPs y de las STOPs (por sus siglas en inglés: “microtubule 
associated proteins” y “stable tubule only polypeptide”, res-
pectivamente).85,86 Las STOPs participan en el desarrollo y 
la diferenciación neuronal. Son proteínas que interaccionan 
con la CaM y se requieren en la formación de las neuritas.87 
También estabilizan a los microtúbulos y se concentran en 
los dominios estables al frío y resistentes a fármacos en los 
axones maduros.88 En células en cultivo N1E-115, la MEL 
induce la formación de neuritas y su alargamiento mediante 
la estimulación de la polimerización de los microtúbulos y a 
través de un incremento en la organización de actina en los 
conos de crecimiento.89,90 Además, la indolamina estimula la 
neuritogénesis temprana mediante la activación de la proteí-
na cinasa C (PKC) y de la RHO cinasa.90 Recientemente de-
mostramos, en cultivos organotípicos de hipocampo, que la 
MEL incrementa la formación de dendritas así como su alar-
gamiento y su complejidad, con un tiempo óptimo de seis ho-
ras en cultivo, en las neuronas e interneuronas de la zona del 
hilus que forma parte del circuito trisináptico del hipocampo 
y que tiene un papel clave en la integración de la memoria 
espacial.52,91,92 Estos efectos fueron dependientes de la concen-
tración y se obtuvo una respuesta máxima con una concen-
tración de 10-7 M de MEL. En esta respuesta participa la CaM 
cinasa II ya que la formación de las dendritas no se estimula 
por MEL en presencia del inhibidor específico de esta enzima 
KN-62 y del inhibidor específico de la PKC, la bisindolilma-
leimida (datos no publicados). Estos resultados y el hecho 
de que la indolamina en células en cultivo activa a la PKC e 
induce la fosforilación de la CaM y su traslado a la fracción 
citoesqueleto membranal, sugieren que esta enzima está vía 
abajo de la PKC en la vía de señalización de la MEL.93,94
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La melatonina tiene efectos
anti-inflamatorios

en el Sistema Nervioso Central

Se sabe que la administración de MEL inhibe la activación de 
la microglia y la producción de citocinas pro-inflamatorias 
en modelos de neuroinflamación aguda causada por infec-
ción bacteriana95 o por isquemia cerebral en ratas.96 Además, 
en el modelo de infección cerebral, el tratamiento con MEL 
(100 mg/kg) disminuye el número de neuronas apoptósi-
cas,95 mientras que en el modelo de isquemia-reperfusión, la 
administración de MEL (5 mg/kg) reduce el infarto cerebral 
y las secuelas neuroconductuales asociadas.96 A nivel mole-
cular, la MEL inhibe la expresión del ARNm de quimioci-
nas como CCL2 (MCP-1), CCL5 y CCL9 (MIP-1γ) inducidas 
por LPS en una línea celular de microglia.97 Este efecto fue 
mediado por la inhibición de la actividad transcripcional de 
NF-κB y STAT/GAS.97 En cultivos organotípicos de cerebro 
de ratón98 y de hipocampo de rata44 estimulados con los pép-
tidos Aβ1-40 y Aβ25-35, respectivamente, la MEL disminu-
ye la secreción de citocinas pro-inflamatorias y previene la 
activación de la microglia y de los astrocitos que se inducen 
por la exposición al péptido Aβ25-35.44 Aunado a estos efec-
tos la MEL inhibe la expresión de las enzimas pro-inflama-
torias iNOS y COX-2, en la línea celular de astrocitos C6,99 
sin inhibir la enzima COX-1, por lo que se ha sugerido que la 
indolamina podría tener efectos terapéuticos similares a los 
de los AINEs, pero sin sus efectos adversos.100 La reducción 
en los niveles de citocinas pro-inflamatorias como TNF- e 
IL-6, enzimas como iNOS y COX-2, y factores de transcrip-
ción como NF-κB, y la estimulación simultánea de sistemas 
antioxidantes, como los asociados a la cascada de Nrf2, entre 
otros, se consideran parte de los mecanismos moduladores 
de la melatonina en la neuroinflamación.101,102

La evidencia que se tiene a la fecha indica que la MEL 
puede ser útil en el tratamiento de la EA y de las taupatías en 
general, por su capacidad antioxidante, por su efecto sincro-
nizador del ritmo sueño-vigilia, por su efecto anti-inflamato-
rio, así como por el efecto inhibidor de la hiperfosforilación 
de la tau y de la formación de placas amiloideas. En años 
recientes se demostró que la MEL estimula la formación de 
nuevas neuronas, la neuritogénesis en sus etapas tempranas, 
así como la formación de dendritas. Sin embargo no se sabe 
si la indolamina estimula la diferenciación morfofuncional 
en otras etapas de este proceso como la formación de axones, 
de espinas dendríticas, de sinapsis competentes y eléctrica-
mente activas. Por todo lo señalado hasta ahora es de suma 
importancia continuar con el estudio del desarrollo neuronal 
en presencia de la MEL, definir los mecanismos de acción 
involucrados en este proceso, así como los efectos que tiene 
esta indolamina en los principales biomarcadores de rasgo 
de las demencias en los modelos de neurodegeneración esta-
blecidos, así como en los precursores neuronales obtenidos 
del neuroepitelio nasal de pacientes neuropsiquiátricos.
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