In non-preserving surgery: the hyperbaric chamber accelerates the time of recovery
Histological and functional evidence with nerves interposed in an experimental model

Figueroa-Granados V,1 Raquel Eguiluz O,2 Venegas Aureliano AS,3 Sánchez Cuauhtémoc E,4 Hernández-Pando R5

SUMMARY

The effect of hyperbaric oxygen (HBO₂) therapy on peripheral nerve after its transection and repair, using microsurgical technique, was studied using the rat sciatic nerve model. Following repair, 50 animals were randomly assigned to four groups: 1) No HBO₂ sectioned and repaired (n = 10) killed at 7 weeks. 2) HBO₂ sectioned and repaired (n = 10) killed at 7 weeks. 3) No HBO₂ sectioned and repaired (n = 10) killed at 14 weeks. 4) HBO₂ sectioned and repaired (n = 10) killed at 14 weeks. Nerve recovery was assessed by neurophysiological studies (EMG and motor latency) comparing the response before nerve section and after repair, at base line, and after 7 or 14 weeks in all groups. Electromyography was performed comparing HBO₂ treated rats and no treated controls after 7 and 14 weeks. Foot-ankle angle response (dorsiflexion) was assessed and histopathology with automated morphometry (axon number, myelin area, blood vessels number) was performed after 7 or 14 weeks. At 7 weeks, motor latency increased

RESUMEN

Antecedentes: Los tiempos de recuperación de la función en las PRR con interposición de nervio sural son aun prolongados. La literatura que respalda el efecto benéfico de la cámara hiperbárica aumenta cada día.

Objetivo: Evaluar el efecto que la terapia con oxígeno hiperbárico tiene sobre el tiempo de éxito de una interposición de nervio periférico.

Material y métodos: Cincuenta ratas Wistar se aleatorizaron en grupos de 10 individuos cada uno. Un grupo de controles sanos, misma talla y edad. La terapia con hiperbárica fue administrada (Monoplace Ncup 44.1 psi; Sechrit, CA). Se midió la recuperación nerviosa mediante estudios neurofisiológicos presacrificio en la semana 7 y 14. Se hicieron mediciones funcionales, histopatológico. El análisis estadístico con t de Student y Anova de una vía.

Resultados: En la semana 7 ya existe un incremento estadísticamente significativo en la cantidad de axones, vasos sanguíneos en los individuos tratados con oxígeno hiperbárico. Después de 14 semanas
INTRODUCTION

Our understanding of the basic underlying mechanism of peripheral nerve regeneration has been advancing rapidly and although there is an immense progress in cellular, biochemical and ultrastructural elements of nerve injury and repair, our knowledge is still quite limited. Nevertheless we continue searching for better ways to improve nerve regeneration, including hyperbaric oxygenation as it is an accepted coadyuvant treatment for several conditions, among them, acute traumatic ischaemias. Traumatic lesions of the extremities are responsible for most of the peripheral nerve injuries. Injured nerves may have a compromised blood supply, edema and impairment of oxygenation that may trigger a vicious cycle of further hypoxia and edema.

When resection of one or both neurovascular bundles is necessary in radical prostatectomy it is possible to use a technique for placing interposition grafts from the sural nerve to one or both neurovascular bundles. Surgeons have performed nerve grafts successfully for many years to repair transected peripheral sensorimotor nerves. The basis for nerve regeneration, and consequently for nerve grafting, is the capacity of axons to produce axon sprouts. After the transection has occurred axons sprouts will invariably grow, then it will be produced a neuroma if they do not come into contact with an environment adequate for their growth. The cut end of the nerve sprouts minifascicles that contain axons sprouts, fibroblasts, Schwann cells and capillaries. The minifascicles grow haphazardly for a limited distance and then a neuroma its produced. On the other hand if the axons encounter an empty nerve sheath, growth is organized and directed, resulting in a new nerve. A nerve graft function is to provide a conduit through which regenerating nerves are oriented to join the distal end of the transected nerve. This description supports the idea that cavernous nerve grafts may restore penile autonomic innervation and also restore therefore will permit to experiment spontaneous erections following deliberate neurovascular bundle resection at the time of radical prostatectomy. According to some of the work available to date. One third of patients with bilateral nerve resection and placement of bilateral nerve grafts had spontaneous, medically unassisted erections sufficient for a sexual intercourse. The greatest return of function is observed 14 to 18 months after surgery. Having established the ability of nerve grafts to restore natural spontaneous erectile function after wide resection of both neurovascular bundles, they began to perform unilateral interposition nerve...
grafts when one neurovascular bundle was resected. Between 1998-2002 a total of 108 previously potent patient's underwent placement of a unilateral interposition of the cavernous nerve by a graft or a sural nerve graft. The observations of these patients demonstrate that 24 of the patients without a graft were potent versus 42% of the patients that had at least one graft after prostatectomy. These and other authors confirm that, nerve grafts provide in solution to a common surgical dilemma. To resect into the posterolateral capsule close to the nerve even this is a high risk for the recovery of potency.

Hyperbaric oxygen treatment has been used for peripheral nerve injuries since the seventies3-7 the rationale for its use is to provide optimal tissue pO2 tension to maintain the neural aerobic metabolism and viability of the tissue, reduce edema, and enhance perfusion of the injured tissue, breaking the vicious cycle of edema and hypoxia, restore axonal transport, and enable the delivery of nutrients at the site of injury; accelerate healing and promoteneovascularization.8 HBO2 has shown favourable effects on healing of mechanically damaged peripheral nerves induced by nerve transection or crushing injury or both in animal models3-6 and in humans.17-21 It has also been reported that HBO2 in the peripheral and central nervous system, mainly due to improvement in microcirculation as it has been considered that mechanical compression destroys nerve blood supply, leaving the nerve anoxic and stopping axonal transport. Ochs22 has shown, in vitro, fast axonal transport restored by the transport administration of normobaric O2 (95%) to an anoxic nerve. Therefore, HBO2 seems to play a role in facilitating peripheral nerve recovery.

MATERIAL AND METHODS

Fifty male Wistar rats, average weight of 295 g, were randomly distributed into four groups ad into to control groups, one with and one without HBO treatment. The surgeon and investigators measuring the outcome were blinded to groups assignment. Animals were anesthetized with intraperitoneal pentobarbital (40 mg/kg), shaved, and prepared with antiseptic solution. The right sciatic nerve was then exposed through a posterolateral approach using a semitendinous biceps femoris (long-head) muscle splitting incision. The left unoperated leg served as control in all animals. The sciatic nerve was dissected free of surrounding connective tissue and transected sharply with a number 15 blade, a piece of blue background material was placed under the sciatic nerve, to improve its view. One millimeter of epineurium was trimmed from the ends with straight scissors. The nerve ends were then re-aligned and repaired, using standard microsurgical techniques with two interfascicular 11-0 nylon and three epineural 10-0 nylon sutures. All repairs were performed by the same microsurgeon who was blinded to the randomization process. The skin incision was closed with running 6-nylon. Animals were randomly assigned to four groups: 1) Not HBO2 treated, sectioned and repaired (n = 10) killed at 7 weeks. 2) Sectioned and repaired, plus 10 days of HBO2 (n = 10) killed at 7 weeks. 3) Sectioned and repaired, not HBO2 treated, killed at 14 weeks. 4) Sectioned and repaired, plus 10 days of HBO2 (n = 10) killed at 14 weeks. HBO2 treatment was administered twice daily with 100% oxygen at 2.0 atmosphere absolute for 90 absolute minutes for 10 days. The first treatment was given within three hours of surgery. All treatments were performed in the animal hyperbaric chamber (Monoplace Ncup 44.1psi. Sechrit, Calif. U.S.A.). Oxygen concentrations within the chamber were monitored with a calibrated oxymeter to ensure 100% oxygen during treatment. Independent variables were: HBO2 treatment or no treatment. Dependent variables were: 1) Neurophysiological evaluation by measuring motor latency, foot-ankle angle values (degrees), and electromyography. 2) Hystopathologic evaluation, including myelin surface, myelinated axons number, and blood vessels count. Neurophysiological studies Foot-ankle angles were evaluated to determine the functional recovery of the sciatic nerve and the group of muscles it supplies. The measurement was recorded with a goniometer, grasping the rat from the back of the body and holding it in space with one hand, while the angle was measured in a free position. The angle during dorsiflexion of the affected leg was measured, considering 15° as the normal angle. A larger than 90° angle would indicate less activity of the group of muscles involved in dorsiflexion, as well as foot drop and loss of the footprint. Motor latencies were as-
essed with needle and surface electrodes placed in the distal part of the affected leg; an electric stimulus was applied in the proximal part above the lesion. Recordings were made with Nicolet Viking IV D. U.S.A. equipment. The electromyography study was performed on the interossei muscles of the foot at 7 or 14 weeks with monopolar needle electrodes. The EMG was classified according to the signs of recovery by assessing reinnervation or denervation. Positive waves and fibrillations were considered signs of denervation and therefore classified as group 3 (+++). Group 2 (++), corresponded to recovery signs, and Group 1 (+), i.e., with few positive waves, corresponded to a good recovery. Preparation of nerve tissue for histology and automated morphometry analysis. All rats were killed, by administering a lethal anesthetic dose, 7 or 14 weeks after sciatic nerve transection and its microsurgical repair. The sciatic nerve was dissected and the previous surgically restored segment was identified, removed, and sectioned in two. Both sections were immediately fixed by immersion in a solution of 4% glutaraldehyde dissolved in 0.20M cacodylate buffer, pH 7.3, for 4 hours at 4°C. Small tissue fragments were postfixed in 1% osmium tetroxide, dehydrated in graded ethyl alcohols, and embedded in Epon resin. One micrometer width transversal nerve sections were obtained, placed on glass slides, stained with toluidin blue, and examined under light microscopy. The number of transversal sectioned axons, the surface area occupied by the myelin layer, and number of blood vessels were determined by automated morphometry using Leica QW500/W (Leica, Milton Keynes, U.K.) image analyzer. Three random fields at 200x magnification from each animal were used for these determinations. **Statistical analysis:** Student’s t test was used to determine statistical significance in these histological parameters, comparing HBO$_2$ treated rats and control non-treated animals. A difference of \(p < 0.05 \) was considered significant. All calculations were made with a SPSS/PC (SPSS Inc. Chicago Il). Data are given as mean and standard deviation. Results within each group were analyzed using one-way ANOVA. Comparison between pairs of means was done with paired Student’s t test. A value of \(p < 0.05 \) was considered significant, unless three groups were compared \((p < 0.01) \).

RESULTS

1) Motor latencies were assessed before nerve transection and after its repair (baseline recordings), and at 7 or 14 weeks thereafter. A) Duration was not statistically different (data not shown). B) Latency was significantly delayed at 7 weeks \((p < 0.033) \) in the group of rats that did not receive HBO$_2$ (figure 1) as compared with the group that received HBO$_2$. C) Amplitude was not different significantly (figure 2) between the two groups, although it was greater in the group of rats that received HBO$_2$ treatment, particularly at 7 weeks. 2) Foot ankle-angle was considered normal at 15° (table 1); as can be observed, it improved in the treated group.
The electromyography revealed (table 2) that most rats without HBO$_2$ treatment had a severe degree of denervation at 7 weeks, whereas 60% of those receiving hyperbaric oxygen, depicted moderate denervation, only 40% had severe denervation at 7 weeks. Fifty per cent of the group of rats without HBO$_2$ treatment at 14 weeks, showed moderate denervation, and 20% severe denervation; whereas, in the group with HBO$_2$ treatment, 90% showed moderate denervation and only 10% light denervation; none showed severe denervation. It is important to mention that electromyographic differences were more significant at 14 weeks, since the nerve recovers slowly. Comparative histological analysis and automated morphometry. We preferred Epon resin inclusion and postfixation with osmium tetraoxide over paraffin embedded tissue sections because the histological structures are better defined and tissue overerlapping, is avoided; the black of the myelin layers produced by osmium tetraoxide allows for better measuring of this important nerve component. Transversal sections of the sciatic nerve in the middle of the surgical reconstituted area showed small patches of chronic inflammation surrounded by fibrosis and occasional foreign body granulomas embracing suture material. After 7 weeks of nerve transection and repair, the surface of axon myelin layers increased in the HBO$_2$ treated groups and continued in the same way up to 14 weeks (figure 3).

| TABLE 1. Comparison of the foot-ankle angle groups between HBO$_2$ treated or not. |
|-----------------------------|-----------------------------|-----------------------------|
| KILLED 7 WEEKS 14 WEEKS |
| No. of rats |
| Group I | Group II | Group III | Group IV |
| (No HBO$_2$) | (HBO$_2$) | (No HBO$_2$) | (HBO$_2$) |
| TOTAL: 40 |
| Foot-ankle angle degree |
| 57.5°-17.19 | 45.5°-18.17 | 68°-16.4 | 57.2°-11.18 |

Table 1. Groups treated with HBO$_2$ and not treated, including foot-ankle angles showing an increase in angulation at weeks 7 and 14, which was more severe in rats that did not receive HBO$_2$ treat.

HBO$_2$ treated rats during 7 weeks showed numerous small axons, and the automated morphometry analysis showed a 70.8% increase in the number of axons in their sciatic nerve in comparison with the non-HBO$_2$ treated rats (figure 4). At 14 weeks posttransection and repair of the sciatic nerve, there was no difference in the number of axons between HBO$_2$ treated and non-treated control animals. After 7 weeks of nerve transaction and repair, HBO$_2$ treated animals showed an important increase of small blood vessels (capillaries, arterioles) over the control non-treated group (figure 5). After 14 weeks of nerve lesion and surgical repair, the number of small vessels was the same in both HBO$_2$ treated and control non-treated groups (figure 6).

DISCUSSION

The long time necessary to recover sexual portency after radical prostatectomy with no preservation of uni or bilateral cavernous nerves. The well known and validated method to transpose sural nerve in many examples. The main finding in this study was that HBO$_2$ treatment enhances peripheral nerve regeneration as evaluated through motor latency, electromyography, ankle-foot angles, and hystopathological analysis. Peripheral nerve fibers show a far greater capacity for regeneration than do those in the central nervous system, and this is one of the most important features distinguishing
both components of the nervous system. Our experimental data suggest that hyperbaric oxygenation may improve and accelerate peripheral nerve regeneration. We believe that the greater number of axons seen at 7 weeks in the HBO₂ group, was secondary to an intense regenerative activity related with an angiogenic effect induced by tissue oxygenation. However, no further axon growth was observed at week 14, and their number even decreased probably because these regenerated axons failed to follow the bands of Bügner or growth cones and entered the connective tissue compartment. Thus, it is likely that the greater number of axons produced at week 7 could not match the less numerous axons from the distal stump, partially interfering with nerve bridging after total axotomy. In the present work, the sciatic nerve was transected not crushed as done by other authors, to preserve the basal lamina of Schwann cells, considered to have a trophic role since they can retain trophic factors such as the fibroblast growth factor involved importantly in regenerating axons; in spite of not preserving the basal lamina in this experiment, the group that underwent HBO₂ had a better outcome. It seems probable that hyperbaric oxygenation increases the number of Schwann cells associated with Wallerian degeneration, producing a variety of trophic factors that participate in nerve regeneration, and they are probably of great relevance in restoring lost qualities of the nerve. It was observed
that the number of capillary vessels increased at 7 weeks in the groups treated with HBO₂. This neovascularization effect of HBO₂ has been documented extensively in the literature.²³,²⁴ It has also been suggested that the stimulus for angiogenesis is mediated through tissue macrophages that migrate and release growth factors.²⁵,²⁶ There is no doubt that after nerve transection there must be a hypoxic state in the involved tissues and, therefore, the arterial partial pressure of oxygen \((\text{PaO}_2) \) and tissue oxygen tension might trigger angiogenesis, which is most important during the first weeks of peripheral nerve regeneration. We also think that the benefit of HBO₂ does not extend to the 14th week, but is helpful in the first weeks as it accelerates the repair process, increasing growth factors locally. This effect could shorten the time required for patient's sexual rehabilitation, which in the end would represent a great advantage for the recovery time.²⁷,²⁸

CONCLUSIONS

The information available from previous experiments and the present study suggests that hyperbaric oxygenation has a place in the treatment of peripheral nerve damage even though this is an area wide open for further research. Velocity of recovery is shortened significantly in the presence of hyperbaric oxygen therapy. Our experimental work interpolated to human situation will encourage more work in this area.

The final proof of the efficacy of nerve grafts after unilateral or bilateral non preserving nerves surgery must await the finalization of the prospective and comparative and randomized studies, comparing nerve grafts (uni or bilateral) versus no grafts after unilateral NVB resection. Until then we should utilize judgement to do NVB grafts, under informed consent to decide whether an nerve graft is or not indicated.

ACKNOWLEDGEMENTS

The authors also thank Dr. Guzman Gonzalez E, for his skillful technical assistance and help with animals and to Contreras-León, J.C. Biologist who prepared all the histology slides.

BIBLIOGRAPHY

