medigraphic.com
ENGLISH

Revista Salud Pública y Nutrición

Coordinación General de Investigación de la Facultad de Salud Pública y Nutrición y la Dirección General de Sistemas e Informática de la Universidad Autónoma de Nuevo León
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 3

<< Anterior Siguiente >>

Rev Salud Publica Nutr 2021; 20 (3)


Evaluación de marcadores antropométricos de riesgo cardiometabólico en adultos de una comunidad de la región Cañada de Oaxaca, México

Cruz-Sánchez JJ, Jiménez-Pineda R, Gutiérrez-Moguel NV, Acosta-Chí ZA, Regalado-Santiago C, González-Cano P
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 45
Paginas: 8-17
Archivo PDF: 346.10 Kb.


PALABRAS CLAVE

Riesgo cardiometabólico, circunferencia de cintura, índice cintura-talla.

RESUMEN

Introducción: Las enfermedades cardiometabólicas representan un importante problema de salud pública a nivel mundial. La evaluación del riesgo permitiría una intervención médica y nutricional oportuna. Objetivo: Determinar la prevalencia de riesgo cardiometabólico (RCM) mediante marcadores antropométricos y la asociación entre dichos marcadores, en adultos de Teotitlán de Flores Magón, Oaxaca; México. Material y Método: Se realizó un estudio transversal, descriptivo en 208 individuos mayores de 20 años. El RCM se evaluó utilizando el índice de masa corporal, circunferencia de cintura, índice cintura–talla e índice de conicidad. Las variables se analizaron mediante estadística descriptiva; las pruebas de Chi-cuadrado de Pearson y de correlación de Spearman se utilizaron para las asociaciones y correlaciones respectivamente, considerando un nivel de significancia estadística de P ‹ 0.05. Resultados: La prevalencia de obesidad fue mayor en mujeres (42.34%) que en hombres (35.21%). La prevalencia de RCM varió de 17.31% a 87.5%, según el marcador utilizado, encontrando correlaciones positivas significativas entre todos ellos. Las mujeres presentaron mayor prevalencia de RCM en todos los marcadores evaluados. Conclusiones: Los hallazgos sugieren que la antropometría es una alternativa económica viable para detectar RCM en comunidades cuyos recursos en salud son limitados, sin embargo, podría complementarse con otro tipo de marcadores.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aguilar-Morales, I., Colin-Ramirez, E., Rivera-Mancía, S., Vallejo, M., & Vázquez-Antona, C. (2018). Performance of waist-to-height ratio, waist circumference, and body mass index in discriminating cardio-metabolic risk factors in a sample of school-aged Mexican children. Nutrients, 10(12), 1850. https://doi.org/10.3390/nu10121850

  2. Arroyo, P., Fernández, V., Loría, A., Pardío, J., Laviada, H., Vargas-Ancona, L., & Ward, R. (2007). Obesidad, morfología corporal y presión arterial en grupos urbanos y rurales de Yucatán. Salud Publica de Mexico, 49(4), 274–285. https://doi.org/10.1590/S0036-36342007000400007

  3. Ashtary-Larky, D., Daneghian, S., Alipour, M., Rafiei, H., Ghanavati, M., Mohammadpour, R., Kooti, W., Ashtary-Larky, P., & Afrisham, R. (2018). Waist circumference to height ratio: Better correlation with fat mass than other anthropometric indices during dietary weight loss in different rates. International Journal of Endocrinology and Metabolism, 16(4), 1. https://doi.org/10.5812/ijem.55023

  4. Browning, L. M., Hsieh, S. D., & Ashwell, M. (2010). A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 05 could be a suitable global boundary value. Nutrition Research Reviews, 23(2), 247–269. https://doi.org/10.1017/S0954422410000144

  5. Charakida, M., Khan, T., Johnson, W., Finer, N., Woodside, J., Whincup, P. H., Sattar, N., Kuh, D., Hardy, R., & Deanfield, J. (2014). Lifelong patterns of BMI and cardiovascular phenotype in individuals aged 60-64 years in the 1946 British birth cohort study: An epidemiological study. The Lancet Diabetes and Endocrinology, 2(8), 648–652. https://doi.org/10.1016/S2213-8587(14)70103-2

  6. Chatterjee, A., Harris, S. B., Leiter, L. A., Fitchett, D. H., Teoh, H., Bhattacharyya, O. K., & Cardiometabolic Risk Working Group (Canadian). (2012). Managing cardiometabolic risk in primary care: summary of the 2011 consensus statement. Canadian Family Physician Medecin de Famille Canadien, 58(2), 389–393.

  7. Després, J. P. (2012). Body fat distribution and risk of cardiovascular disease: An update. Circulation, 126(10), 1301–1313. https://doi.org/10.1161/CIRCULATIONAHA.111.067264

  8. Dhana, K., Ikram, M. A., Hofman, A., Franco, O. H., & Kavousi, M. (2015). Anthropometric measures in cardiovascular disease prediction: Comparison of laboratory-based versus non-laboratory-based model. Heart, 101(5), 377–383. https://doi.org/10.1136/heartjnl-2014-306704

  9. Fitzgerald, S. J., Janorkar, A. V., Barnes, A., & Maranon, R. O. (2018). A new approach to study the sex differences in adipose tissue. Journal of Biomedical Science, 89. https://doi.org/10.1186/s12929-018-0488-3

  10. Ford, E. S., Mokdad, A. H., & Giles, W. H. (2003). Trends in waist circumference among U.S. adults. Obesity Research, 11(10), 1223–1231. https://doi.org/10.1038/oby.2003.168

  11. Fosbøl, M. O., & Zerahn, B. (2015). Contemporary methods of body composition measurement. Clinical Physiology and Functional Imaging, 35(2), 81–97. https://doi.org/10.1111/cpf.12152

  12. Fuchs, F. D., & Whelton, P. K. (2020). High Blood Pressure and Cardiovascular Disease. In Hypertension (Vol. 75, Issue 2, pp. 285–292). Lippincott Williams and Wilkins. https://doi.org/10.1161/HYPERTENSIONAHA.119.14240

  13. Gallagher, D., Visser, M., Sepúlveda, D., Pierson, R. N., Harris, T., & Heymsfieid, S. B. (1996). How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? American Journal of Epidemiology. https://doi.org/10.1093/oxfordjournals.aje.a008733

  14. Gierach, M., Gierach, J., Ewertowska, M., Arndt, A., & Junik, R. (2014). Correlation between Body Mass Index and Waist Circumference in Patients with Metabolic Syndrome. ISRN Endocrinology, 2014(1), 1–6. https://doi.org/10.1155/2014/514589

  15. González-Muniesa, P., Mártinez-González, M. A., Hu, F. B., Després, J. P., Matsuzawa, Y., Loos, R. J. F., Moreno, L. A., Bray, G. A., & Martinez, J. A. (2017). Obesity. Nature Reviews Disease Primers, 1(17034). https://doi.org/10.1038/nrdp.2017.34

  16. Graves, L., Garnett, S. P., Cowell, C. T., Baur, L. A., Ness, A., Sattar, N., & Lawlor, D. A. (2014). Waist-to-height ratio and cardiometabolic risk factors in adolescence: Findings from a prospective birth cohort. Pediatric Obesity, 9(5), 327–338. https://doi.org/10.1111/j.2047-6310.2013.00192.x

  17. INEGI. (2015). Oaxaca. División municipal. INEGI. http://www.cuentame.inegi.org.mx/monografias/informacion/oax/territorio/div_municipal.aspx?tema=me&e=20

  18. Javed, A., Jumean, M., Murad, M. H., Okorodudu, D., Kumar, S., Somers, V. K., Sochor, O., & Lopez-Jimenez, F. (2015). Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: A systematic review and meta-analysis. Pediatric Obesity, 10(3), 234–244. https://doi.org/10.1111/ijpo.242

  19. Karastergiou, K., Smith, S. R., Greenberg, A. S., & Fried, S. K. (2012). Sex differences in human adipose tissues - The biology of pear shape. Biology of Sex Differences, 3(1), 13. https://doi.org/10.1186/2042-6410-3-13

  20. Mantzoros, C. S., Evagelopoulou, K., Georgiadis, E. I., & Katsilambros, N. (1996). Conicity index as a predictor of blood pressure levels, insulin and triglyceride concentrations of healthy premenopausal women. Hormone and Metabolic Research, 28(1), 32–34. https://doi.org/10.1055/s-2007-979126

  21. Marcos-Delgado, A., Fernández-Villa, T., Martínez-González, M. Á., Salas-Salvadó, J., Corella, D., Castañer, O., Martínez, J. A., Alonso-Gómez, Á. M., Wärnberg, J., Vioque, J., Romaguera, D., López-Miranda, J., Estruch, R., Tinahones, F. J., Lapetra, J., Serra-Majem, J. L., García-Molina, L., Tur, J. A., de Paz, J. A., … Martín, V. (2020). The effect of physical activity and high body mass index on health-related quality of life in individuals with metabolic syndrome. International Journal of Environmental Research and Public Health, 17(10), 3728. https://doi.org/10.3390/ijerph17103728

  22. Megchún-Hernández, M., Espinosa-Raya, J., García-Parra, E., Albavera-Hernández, C., & Briones-Aranda, A. (2019). Association of anthropometric indicators to evaluate nutritional status and cardiometabolic risk in mexican teenagers. Nutricion Hospitalaria, 36(5), 1049–1054. https://doi.org/10.20960/nh.02487

  23. Melin, E. O., Thulesius, H. O., Hillman, M., Svensson, R., Landin-Olsson, M., & Thunander, M. (2019). Lower HDL-cholesterol, a known marker of cardiovascular risk, was associated with depression in type 1 diabetes: A cross sectional study. Lipids in Health and Disease, 18(65). https://doi.org/10.1186/s12944-019-1009-4

  24. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18

  25. Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 17(122). https://doi.org/10.1186/s12933-018-0762-4

  26. Pitanga, F. J. G., & Lessa, I. (2005). [Anthropometric indexes of obesity as an instrument of screening for high coronary risk in adults in the city of Salvador--Bahia]. Arquivos Brasileiros de Cardiologia, 85(1), 26–31. https://doi.org//S0066-782X2005001300006

  27. Ramírez-Vélez, R., Pérez-Sousa, M. Á., Izquierdo, M., Cano-Gutierrez, C. A., González-Jiménez, E., Schmidt-Riovalle, J., González-Ruíz, K., & Correa-Rodríguez, M. (2019). Validation of surrogate anthropometric indices in older adults: What is the best indicator of high cardiometabolic risk factor clustering? Nutrients, 11(8), 1701. https://doi.org/10.3390/nu11081701

  28. Rangel-Baltazar, E., Cuevas-Nasu, L., Shamah-Levy, T., Rodríguez-Ramírez, S., Méndez-Gómez-Humarn, I., & Rivera, J. A. (2019). Association between high waist-to-height ratio and cardiovascular risk among adults sampled by the 2016 half-way national health and nutrition survey in Mexico (ENSANUT MC 2016). Nutrients, 11(6), 1402. https://doi.org/10.3390/nu11061402

  29. Rivera-Dommarco, J. Á., Arantxa-Colchero, A. M., Luis-Fuentes, M., González de Cosío Martínez, T., Aguilar-Salinas, C. A., Hernández-Licona, G., & Barquera, S. (2019). La obesidad en México. Estado de la política pública y recomendaciones para su prevención y control. Instituto Nacional de Salud Pública.

  30. Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J., Magni, P., Santos, R. D., Arsenault, B., Cuevas, A., Hu, F. B., Griffin, B. A., Zambon, A., Barter, P., Fruchart, J. C., Eckel, R. H., Matsuzawa, Y., & Després, J. P. (2020). Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nature Reviews Endocrinology, 16(3), 177–189. https://doi.org/10.1038/s41574-019-0310-7

  31. San-Cristobal, R., Navas-Carretero, S., Martínez-González, M. Á., Ordovas, J. M., & Martínez, J. A. (2020). Contribution of macronutrients to obesity: implications for precision nutrition. Nature Reviews Endocrinology, 16(6), 305–320. https://doi.org/10.1038/s41574-020-0346-8

  32. Sánchez, E., Sánchez, M., Betriu, À., Rius, F., Torres, G., Purroy, F., Pamplona, R., Ortega, M., López-Cano, C., Hernández, M., Bueno, M., Fernández, E., Salvador, J., & Lecube, A. (2020). Are Obesity Indices Useful for Detecting Subclinical Atheromatosis in a Middle-Aged Population? Obesity Facts, 13(1), 1. https://doi.org/10.1159/000502696

  33. Shamah-Levy, T., Campos-Nonato, I., Cuevas-Nasu, L., Hernández-Barrera, L., Morales-Ruán, M. del C., Rivera-Dommarco, J., & Barquera, S. (2019). Sobrepeso y obesidad en población mexicana en condición de vulnerabilidad. Resultados de la Ensanut 100k. Salud Pública de México, 61(6), 852–865. https://doi.org/10.21149/10585

  34. Shidfar, F., Alborzi, F., Salehi, M., & Nojomi, M. (2012). Association of waist circumference, body mass index and conicity index with cardiovascular risk factors in postmenopausal women. Cardiovascular Journal of Africa, 23(8), 442–445. https://doi.org/10.5830/CVJA-2012-038

  35. Smith, S. C., & Haslam, D. (2007). Abdominal obesity, waist circumference and cardiometabolic risk: Awareness among primary care physicians, the general population and patients at risk - The Shape of the Nations survey. Current Medical Research and Opinion, 23(1), 29–47. https://doi.org/10.1185/030079906X159489

  36. Sniderman, A. D., Couture, P., Martin, S. S., DeGraaf, J., Lawler, P. R., Cromwell, W. C., Wilkins, J. T., & Thanassoulis, G. (2018). Hypertriglyceridemia and cardiovascular risk: a cautionary note about metabolic confounding. Journal of Lipid Research, 59(7), 1266–1275. https://doi.org/10.1194/jlr.R082271

  37. Stevens, J., Katz, E. G., & Huxley, R. R. (2010). Associations between gender, age and waist circumference. European Journal of Clinical Nutrition, 64(1), 6–15. https://doi.org/10.1038/ejcn.2009.101

  38. Valdez, R. (1991). A simple model-based index of abdominal adiposity. Journal of Clinical Epidemiology, 44(9), 955–956. https://doi.org/10.1016/0895-4356(91)90059-I

  39. Wall-Medrano, A., Ramos-Jiménez, A., Hernandez-Torres, R. P., Villalobos-Molina, R., Tapia-Pancardo, D. C., Jiménez-Flores, J. R., Méndez-Cruz, A. R., Murguía-Romero, M., Gallardo-Ortíz, I. A., & Urquídez-Romero, R. (2016). Cardiometabolic risk in young adults from northern Mexico: Revisiting body mass index and waist-circumference as predictors. BMC Public Health, 16(236), 1–9. https://doi.org/10.1186/s12889-016-2896-1

  40. Welch, G. W., & Sowers, M. R. (2000). The interrelationship between body topology and body composition varies with age among women. Journal of Nutrition, 130(9), 2371–2377. https://doi.org/10.1093/jn/130.9.2371

  41. Wilson, K. (2020). Obesity: Understanding Obesity. FP Essentials, 1(492), 11–18.

  42. World Health Organization. (2008). Waist Circumference and Waist-Hip Ratio. Report of a WHO Expert Consultation. https://doi.org/10.1038/ejcn.2009.139

  43. Ying, X., Song, Z. Y., Zhao, C. J., & Jiang, Y. (2010). Body mass index, waist circumference, and cardiometabolic risk factors in young and middle-aged Chinese women. Journal of Zhejiang University: Science B, 11(9), 639–646. https://doi.org/10.1631/jzus.B1000105

  44. Yoo, E. G. (2016). Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean Journal of Pediatrics, 59(11), 425–431. https://doi.org/10.3345/kjp.2016.59.11.425

  45. Zhang, X., Shu, X. O., Gao, Y. T., Yang, G., Matthews, C. E., Li, Q., Li, H., Jin, F., & Zheng, W. (2004). Anthropometric predictors of coronary heart disease in Chinese women. International Journal of Obesity, 28(6), 734–740.https://doi.org/10.1038/sj.ijo.0802634




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Salud Publica Nutr. 2021;20

ARTíCULOS SIMILARES

CARGANDO ...