medigraphic.com
ENGLISH

Revista Cubana de Hematología, Inmunología y Hemoterapia

ISSN 1561-2996 (Digital)
ISSN 0864-0289 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 3

<< Anterior Siguiente >>

Rev Cubana Hematol Inmunol Hemoter 2020; 36 (3)


Anemias hemolíticas hereditarias por defectos en la síntesis de globina

Martínez-Sánchez LM, Castañeda PS
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 51
Paginas:
Archivo PDF: 804.36 Kb.


PALABRAS CLAVE

talasemias, α-talasemias, β-talasemias, hemoglobinas inestables.

RESUMEN

Introducción: Los defectos genéticos en la molécula de hemoglobina se dividen en aquellos que tienen una tasa reducida de producción de una o más cadenas de globina, las talasemias; y en los que se producen cambios estructurales que conducen a inestabilidad o transporte anormal de oxígeno. Objetivo: Explicar los diferentes mecanismos por los cuales ocurren las talasemias y otras alteraciones en la síntesis de las cadenas de globina, así como las características moleculares, fisiopatogénicas y los cambios hematológicos. Métodos: Se realizó una revisión de la literatura, en inglés y español, a través del sitio web PubMed y el motor de búsqueda Google académico de artículos publicados en los últimos 10 años. Se hizo un análisis y resumen de la bibliografía revisada. Análisis y síntesis de la información: Las talasemias son un grupo heterogéneo de defectos genéticos en la síntesis de hemoglobina, que causa una disminución en la tasa de producción de una o más cadenas de la molécula. De acuerdo a la cadena de globina que presenta el defecto se dividen en α-β-, δβ- o γδβ-talasemias. Conclusiones: Las talasemias y las hemoglobinopatías son las enfermedades hemolíticas hereditarias más comunes en muchas partes del mundo, caracterizadas por complejas interacciones entre anemia, eritropoyesis ineficaz y alteraciones del metabolismo del hierro.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ. 2001;79:704-12.

  2. Sabath DE. Molecular Diagnosis of Thalassemias and Hemoglobinopathies: An ACLPS Critical Review. Am J ClinPathol. 2017;148(1):6-15.

  3. Farashi S, Harteveld CL. Molecular basis of a-thalassemia. Blood Cells Mol Dis. 2018;70:43-53.

  4. Viprakasit V, Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol Oncol Clin North Am. 2018;32(2):193-211.

  5. Chan WY, Leung AW, Luk CW, Li RC, Ling AS, Ha SY. Outcomes and morbidities of patients who survive haemoglobin Bart's hydropsfetalis syndrome: 20-year retrospective review. Hong Kong Med J. 2018;24(2):107-18.

  6. Bhat VS, Dewan KK, Krishnaswamy PR. The Diagnosis of a-Thalassaemia: A Case of Hemoglobin H -a Deletion. Indian J ClinBiochem. 2010;25(4):435-40.

  7. Risoluti R, Materazzi S, Sorrentino F, Bozzi C, Caprari P. Update on thalassemia diagnosis: New insights and methods. Talanta. 2018;183:216-22.

  8. Yap ZM, Sun KM, Teo CR, Tan AS, Chong SS. Evidence of differential selection for the -a(3.7) and -a(4.2) single-a-globin gene deletions within the same population. Eur J Haematol. 2013;90(3):210-3.

  9. He Y, Zhao Y, Lou JW, Liu YH, Li DZ. Fetal Anemia and Hydrops Fetalis Associated with Homozygous Hb Constant Spring (HBA2: c.427T?>?C). Hemoglobin. 2016;40(2):97-101.

  10. Ang AL, Le TT, Tan RS. HbH Constant Spring disease has lower serum ferritin relative to liver iron concentration (LIC): importance of LIC measurement and potential impact on serum ferritin thresholds for iron chelation. Br J Haematol. 2017;176(6):986-8.

  11. Brancaleoni V, Di Pierro E, Motta I, Cappellini MD. Laboratory diagnosis of thalassemia. Int J Lab Hem. 2016;38:32-40.

  12. Songdej D, Babbs C, Higgs DR; BHFS International Consortium. An international registry of survivors with Hb Bart's hydropsfetalissyndrome. Blood. 2017;129(10):1251-9.

  13. Aiken L, Linpower L, Tsitsikas DA, Win N. Hyperhaemolysis in a pregnant patient with HbH disease. Transfus Med. 2019;29(3):217-8.

  14. Azma RZ, Ainoon O, Hafiza A, Azlin I, Noor Farisah AR, Nor Hidayati S, et al. Molecular characteristic of alpha thalassaemia among patients diagnosed in UKM Medical Centre. Malays J Pathol. 2014;36(1):27-32.

  15. Cao J, He S, Pu Y, Liu J, Liu F, Feng J. Prenatal Diagnosis and Molecular Analysis of a Large Novel Deletion (- -JS) Causing a0-Thalassemia. Hemoglobin. 2017;41(4-6):243-7.

  16. Au PK, Kan AS, Tang MH, Leung KY, Chan KY, Tang TW, et al. A Fetus with Hb Bart's Disease Due to Maternal UniparentalDisomy for Chromosome 16. Hemoglobin. 2016;40(1):66-9.

  17. Schenkel LC, Kernohan KD, McBride A, Reina D, Hodge A, Ainsworth PJ, et al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin. 2017;10:10.

  18. Steensma DP, Porcher JC, Hanson CA, Lathrop CL, Hoyer JD, Lasho TA, et al. Prevalence of erythrocyte haemoglobin H inclusions in unselected patients with clonal myeloid disorders. Br J Haematol. 2007;139:439-42.

  19. De Sanctis V, Kattamis C, Canatan D, Soliman AT, Elsedfy H, Karimi M, et al. ß-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr J Hematol Infect Dis. 2017;9(1):e2017018.

  20. Hoffbrand AV, Catovsky D, Tuddenham EGD, eds. Postgraduate Haematology. 5th ed. Oxford: Blackwell Publishing; 2005.

  21. Origa R. ß-Thalassemia. Gen Med. 2017;19(6):609-19.

  22. Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia.Lancet.2018; 391:155-67.

  23. Salvatori F, Pappadà M, Breveglieri G, D'Aversa E, Finotti A, Lampronti I, et al. UPF1 silenced cellular model systems for screening of read-through agents active on ß039 thalassemia point mutation. BMC Biotechnol. May 2018;18(1):28.

  24. Baker SL, Hogg JR. A system for coordinated analysis of translational read through and nonsense-mediated mRNA decay. PLoS One. 2017;12(3):e0173980.

  25. Zivot A, Lipton JM, Narla A, Blanc L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol Med. 2018;24:11.

  26. Nienhuis AW, Nathan DG. Pathophysiology and clinical manifestations of the ß -thalassemias. Cold Spring Harb Perspect Med. 2012;2:a011726.

  27. Wu HP, Lin CL, Chang YC, Wu KH, Lei RL, Peng CT, et al. Survival and complication rates in patients with thalassemia major in Taiwan. Pediatr Blood Cancer. 2017;64:135-8.

  28. Vinciguerra M, Passarello C, Leto F,Crivello A, Fustaneo M, Cassarà et al. Coinheritance of a rare nucleotide substitution on the ß -globin gene and other known mutations in the globin clusters: management in genetic counseling. Hemoglobin. 2016;40(4):231-5.

  29. Mettananda S, Higgs DR. Molecular Basis and Genetic Modifiers of Thalassemia. Hematol Oncol Clin North Am. 2018;32(2):177-91.

  30. Asadov CD. Immunologic abnormalities in ß-thalassemia. J Blood Disord Transf. 2014;5(7):1000224.

  31. Rund D. Thalassemia 2016: Modern medicine battles an ancient disease. Am J Hematol. 2016;91:15-21.

  32. Aydinok Y, Porter JB, Piga A, Elalfy M, El-Beshlawy A, Kilinç Y, et al. Prevalence and distribution of iron overload in patients with transfusion-dependent anemias differs across geographic regions: results from the CORDELIA study. Eur J Haematol. 2015;95:244-53.

  33. Vijay G Sankaran DGN, Orkin SH. Thalassemias. In: Orkin SH; Fisher DE; Ginsburg D; Look AT; Lux SE; Nathan DG (eds.) Nathan and Oski'sHematology and Oncology of Infancy and Childhood. 8th ed. Philadelphia: Elsevier Saunders; 2015. p.715-69.

  34. Dessì C, Leoni G, Moi P, Danjoub F, Follesab I, Loreta M, et al. Thalassemia major between liver and heart: Where we are now. Blood Cells Mol Dis. 2015;55:82-8.

  35. Maiti A, Chakraborti A, Chakraborty P, Mishra S. Subclinical haemorrhagic tendency exists in patients with b-thalassaemia major in early childhood. Australas Med J. 2012;5(2):152-5.

  36. Sien Y, Yusoff A, Shahar S, Rajikan R. Bone health status among thalassemia children. Int J Public Health Res. 2014;4(1):399-404.

  37. Giusti A, Pinto V, Forni GL, Pilotto A. Management of beta-thalassemia-associated osteoporosis. Ann NY Acad Sci. 2016; 1368(1):73-81.

  38. Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, et al. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci. 2014;15:10296-333.

  39. Madhok S, Madhok S. Dental considerations in Thalassemic patients. J Dental Med Sci. 2014;13(6):57-62.

  40. Khamphikham P, Sripichai O, Munkongdee T, Fucharoen S, Tongsima S, Smith DR. Genetic variation of Krüppel-like factor 1 (KLF1) and fetal hemoglobin (HbF) levels in ß0-thalassemia/HbE disease. IntJHematol. 2018;107(3):297-310.

  41. Graffeo L, Vitrano A, Giambona A, Scondotto S, Dardanoni G, Gluud C, et al. The heterozygote state for ß-thalassemia detrimentally affects health outcomes. Am J Hematol. 2017;92:E23-5.

  42. McGann PT, Nero AC, Ware RE. Clinical Features of ß-Thalassemia and Sickle Cell Disease. AdvExp Med Biol. 2017;1013:1-26.

  43. Agapidou A, King P, Ng C, Tsitsikas DA. Double heterozygocity for hemoglobin C and beta thalassemia dominant: A rare case of thalassemia intermedia. Hematol Rep. 2017;9(4):7447.

  44. Kumar MP, Prasad P, Ghosal T, Kumar PS, KantiDolai T. Predictors for Transfusion Requirement in Haemoglobin E-ß Thalassemia. Int J Med Public Health. 2017;7(1):28-32.

  45. Traivaree C, Monsereenusorn C, Rujkijyanont P, Prasertsin W, Boonyawat B. Genotype-phenotype correlation among beta-thalassemia and beta-thalassemia/HbE disease in Thai children: predictable clinical spectrum using genotypic analysis. J Blood Med. 2018;9:35-41.

  46. Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol. 2018;180:630-43.

  47. Ottolenghi S, Giglioni B, Comi P, Gianni AM, Polli E, Acquaye CTA, et al. Globin gene deletion in HPFH, d°ß°thalassaemia and HbLepore disease. Nature.1979;278:654-7.

  48. He S, Wei Y, Lin L, Chen Q, Yi S, Zuo Y, et al. The prevalence and molecular characterization of (dß)0-thalassemia and hereditary persistence of fetal hemoglobin in the Chinese Zhuang population. J Clin Lab Anal. 2018;32:e22304.

  49. Sawant M, Gorivale M, Manchanda R, Colah R, Ghosh K, Nadkarni A, et al. Synergistic effect of two ß globin gene cluster mutations leading to the hereditary persistence of fetal hemoglobin (HPFH) phenotype. Mol Biol Rep. 2017;44(5):413-7.

  50. Kerdpoo S, Limweeraprajak E, Tatu T. Effect of Swiss-type heterocellular HPFH from XmnI-G? and HBBP1 polymorphisms on HbF, HbE, MCV and MCH levels in Thai HbE carriers. Int J Hematol. 2014;99(3):338-44.

  51. Muñoz Tormo-Figueres Á, Sanchis Calvo A, Guibert Zafra B. Epsilon gamma delta beta thalassemia: A rare cause of fetal and neonatal anemia. Med Clin (Barc). 2018;150(9):368-9.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Hematol Inmunol Hemoter . 2020;36

ARTíCULOS SIMILARES

CARGANDO ...