medigraphic.com
ENGLISH

Revista de la Facultad de Medicina UNAM

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 4

<< Anterior Siguiente >>

Rev Fac Med UNAM 2021; 64 (4)


Infección del sistema nervioso por el coronavirus SARS-CoV-2

Escobar PL, Martínez SSS, del Río QMA, Vaca DL
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 84
Paginas: 7-24
Archivo PDF: 1686.20 Kb.


PALABRAS CLAVE

Coronavirus SARS-CoV-2, COVID-19, receptor de angiotensina 2, sistema nervioso, inflamación.

RESUMEN

El síndrome respiratorio agudo severo es ocasionado por los coronavirus SARS-CoV. Los coronavirus SARS-CoV y SARSCoV- 2 se unen al receptor de angiotensina 2 (ECA2), que se localiza en el tejido epitelial y el endotelio vascular del cuerpo humano. Los efectos devastadores de la COVID-19 incluyen los vasos sanguíneos, el cerebro, el tracto gastrointestinal, los riñones, el corazón y el hígado. La tromboembolia, la coagulación intravascular diseminada, el daño cardiaco y la falla multiorgánica son complicaciones que aparecen de forma directa o indirecta con la COVID-19. Como otros coronavirus, el SARS-CoV-2 produce manifestaciones neurológicas. El epitelio olfatorio es la vía principal de acceso del virus al cuerpo, razón por la cual la pérdida del olfato y gusto es frecuente en la COVID leve. Sin embargo, la infección por el SARS-CoV-2 no cursa con rinorrea o congestión nasal, a diferencia de los coronavirus endémicos. Los síntomas nerviosos de la COVID-19 son variados e incluyen dolor de cabeza, mareos, enfermedad cerebrovascular aguda, epilepsia, trastornos psiquiátricos, encefalitis, neuropatía, embolia y manifestaciones asociadas al sistema nervioso periférico como hiposmia/anosmia, hipoageusia/ageusia, dolor muscular, desmielinización y síndrome de Guillian-Barre, entre otros. A la fecha, no se han encontrado respuestas definitivas que expliquen el amplio espectro de los efectos del SARS-CoV-2 en el sistema nervioso. En esta revisión se abordan los mecanismos fisiopatológicos principales que se han propuesto hasta le fecha, con la finalidad de entender mejor las posibles causas de las manifestaciones neurológicas a corto y largo plazo de los pacientes con COVID-19.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH, Chan KH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet [Internet]. 2003 Oct 25 [citado 15 de mayo de 2021];362(9393):1353-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14585636/

  2. Drosten C, Günther S, Preiser W, van der Werf S, Brodt H-R, Becker S, et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N Engl J Med [Internet]. 2003 May 15 [citado 15 de mayo de 2021];348(20):1967-76. Disponible en: https://pubmed. ncbi.nlm.nih.gov/12690091/

  3. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. N Engl J Med [Internet]. 2003 May 15 [citado 15 de mayo de 2021];348(20):1953-66. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12690092/

  4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N Engl J Med [Internet]. 2012 Nov 8 [citado 15 de mayo de 2021];367(19):1814-20. Disponible en: https://pubmed. ncbi.nlm.nih.gov/23075143/

  5. Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet [Internet]. 2020 Feb 15 [citado 15 de mayo de 2021];395(10223):514-23. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31986261/

  6. Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature [Internet]. 2020 Jul 9 [citado 16 de mayo de 2021];583(7815):282-5. Disponible en: https://doi.org/10.1038/s41586-020-2169-0

  7. Harb JG, Noureldine HA, Chedid G, Eldine MN, Abdallah DA, Chedid NF, et al. SARS, MERS and COVID-19: Clinical manifestations and organ-system complications: A mini review. Pathogens and Disease [Internet]. 2020 [citado 18 de mayo de 2021];78(4). Disponible en: https://pubmed. ncbi.nlm.nih.gov/32633327/

  8. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of COVID-19 in New York City. N Engl J Med [Internet]. 2020 Jun 11 [citado 18 de mayo de 2021];382(24):2372-4. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32302078/

  9. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc [Internet]. 2020 Mar 17 [citado 16 de mayo de 2021];323(11):1061-9. Disponible en: https:// jamanetwork.com/journals/jama/fullarticle/2761044

  10. Li W, Moore MJ, Vasllieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature [Internet]. 2003 Nov 27 [citado 16 de mayo de 2021];426(6965):450-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14647384/

  11. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-80.e8.

  12. Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of sars-cov-2 with the blood-brain barrier. International Journal of Molecular Sciences. MDPI AG [Internet]. 2021 [citado 16 de mayo de 2021];22:1-28. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33800954/

  13. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, McGary H, Razmpour R, Galie PA, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. bioRxiv Prepr Serv Biol [Internet]. 2020 Jun 15 [citado 17 de mayo de 2021]. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/32587958

  14. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci [Internet]. 2021 Feb 1 [citado 16 de mayo de 2021];24(2):168-75. Disponible en: https://doi.org/10.1038/s41593-020-00758-5

  15. Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, et al. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients. Cell [Internet]. 2020 Jun 25 [citado 16 de mayo de 2021];181(7):1475-1488.e12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32479746/

  16. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis [Internet]. 2020 Oct 1 [citado 16 de mayo de 2021];20(10):1135-40. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32526193/

  17. Bergquist SH, Partin C, Roberts DL, O’Keefe JB, Tong EJ, Zreloff J, et al. Non-hospitalized Adults with COVID-19 Differ Noticeably from Hospitalized Adults in Their Demographic, Clinical, and Social Characteristics. SN Compr Clin Med [Internet]. 2020 Sep 14 [citado 16 de mayo de 2021];2(9):1349-57. Disponible en: https://doi.org/10.1007/ s42399-020-00453-3

  18. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA [Internet]. 2020 [citado 16 de mayo de 2021];323:1239-42. Disponible en: https://jamanetwork. com/

  19. Chang TH, Wu JL, Chang LY. Clinical characteristics and diagnostic challenges of pediatric COVID-19: A systematic review and meta-analysis. J Formos Med Assoc [Internet]. 2020 May 1 [citado 16 de mayo de 2021];119(5):982-9. Disponible en: /pmc/articles/PMC7161491/

  20. Sotoca J, Rodríguez-Álvarez Y. COVID-19-associated acute necrotizing myelitis. Neurol Neuroimmunol neuroinflammation [Internet]. 2020 Sep 1 [citado 17 de mayo de 2021];7(5):803. Disponible en: /pmc/articles/PMC7309521/

  21. Norouzi M, Miar P, Norouzi S, Nikpour P. Nervous System Involvement in COVID-19: A Review of the Current Knowledge. Mol Neurobiol. 2021;

  22. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol [Internet]. 2020 Jun 1 [citado 16 de mayo de 2021];77(6):683-90. Disponible en: https://pubmed.ncbi. nlm.nih.gov/32275288/

  23. Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, Sánchez-Larsen Á, Layos-Romero A, García-García J, et al. Neurologic manifestations in hospitalized patients with COVID- 19: The ALBACOVID registry. Neurology [Internet]. 2020 Aug 25 [citado 16 de mayo de 2021];95(8):e1060-70. Disponible en: https://n.neurology.org/content/95/8/e1060

  24. Liotta EM, Batra A, Clark JR, Shlobin NA, Hoffman SC, Orban ZS, et al. Frequent neurologic manifestations and encephalopathy-associated morbidity in COVID-19 patients. Ann Clin Transl Neurol [Internet]. 2020 Nov 1 [citado 16 de mayo de 2021];7(11):2221-30. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/ acn3.51210

  25. Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, Drew DA, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med [Internet]. 2020 Jul 1 [citado 16 de mayo de 2021];26(7):1037-40. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32393804/

  26. Lechien JR, Chiesa-Estomba CM, Beckers E, Mustin V, Ducarme M, Journe F, et al. Prevalence and 6-month recovery of olfactory dysfunction: a multicentre study of 1363 COVID-19 patients. J Intern Med [Internet]. 2021 [citado 16 de mayo de 2021]; Disponible en: https://pubmed.ncbi. nlm.nih.gov/33403772/

  27. Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron Cell Press [Internet]. 2020 [citado 16 de mayo de 2021];107(2):219-33. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC7328585/

  28. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurology [Internet]. 2020 [citado 16 de mayo de 2021];77(8):1018-27. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32469387/

  29. Sungnak W, Huang N, Bécavin C, Berg M. SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. arXiv [Internet]. 2020 [citado 16 de mayo de 2021];26:681-7. Disponible en: http:// arxiv.org/abs/2003.06122

  30. Morrison EE, Costanzo RM. Morphology of olfactory epithelium in humans and other vertebrates. Microsc Res Tech. 1992;23(1):49-61.

  31. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-Converting Enzyme 2: SARSCoV- 2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research [Internet]. 2020 [citado 16 de mayo de 2021];126(10):1456-74. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32264791/

  32. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van Den Berge K, Gong B, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv [Internet]. 2020 Jul 1 [citado 16 de mayo de 2021];6(31):5801-32. Disponible en: http://advances. sciencemag.org/

  33. Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: Implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020;56(3):19-22.

  34. Nampoothiri S, Sauve F, Ternier G, Fernandois D, Coelho C, Imbernon M, et al. The hypothalamus as a hub for SARSCoV- 2 brain infection and pathogenesis. bioRxiv [Internet]. 2020 [citado 16 de mayo de 2021]. p. 2020.06.08.139329. Disponible en: https://doi.org/10.1101/2020.06.08.139329

  35. Cyranoski D. Profile of a killer: the complex biology powering the coronavirus pandemic. Nature [Internet]. 2020 [citado 16 de mayo de 2021];581(7806):22-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32367025/

  36. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by Human Respiratory Coronaviruses. J Virol. 2000;74(19):8913-21.

  37. Iadecola C, Anrather J, Kamel H. Effects of COVID-19 on the Nervous System. Cell Press [Internet]. 2020 [citado 16 de mayo de 2021];183:16-27.e. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32882182/

  38. Lima M, Siokas V, Aloizou AM, Liampas I, Mentis AFA, Tsouris Z, et al. Unraveling the Possible Routes of SARSCOV- 2 Invasion into the Central Nervous System. Curr Treat Options Neurol [Internet]. 2020 [citado 16 de mayo de 2021];22(11):37. Disponible en: https://pubmed.ncbi. nlm.nih.gov/32994698/

  39. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A [Internet]. 2020 May 26 [citado 18 de mayo de 2021];117(21):11727-34. Disponible en: www.pnas.org/cgi/ doi/10.1073/pnas.2003138117

  40. Song E, Zhang C, Israelow B, Lu P, Weizman O El, Liu F, et al. Neuroinvasive potential of SARS-CoV-2 revealed in a human brain organoid model. bioRxiv [Internet]. 2020 [citado 18 de mayo de 2021];6:9. Disponible en: https://doi. org/10.1101/2020.06.25.169946

  41. Pellegrini L, Albecka A, Mallery DL, Kellner MJ, Paul D, Carter AP, et al. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell [Internet]. 2020 Dec 3 [citado 17 de mayo de 2021];27(6):951-961.e5. Disponible en: https://doi.org/10.1016/j.stem.2020.10.001

  42. Spindler KR, Hsu TH. Viral disruption of the blood-brain barrier. Trends in Microbiology [Internet]. 2012 [citado 17 de mayo de 2021]. p. 282-90. Disponible en: /pmc/articles/ PMC3367119/

  43. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARSCoV- 2 cell entry and infectivity. Science (80-) [Internet]. 2020 Nov 13 [citado 16 de mayo de 2021];370(6518). Disponible en: https://pubmed.ncbi.nlm.nih.gov/33082293/

  44. Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ [Internet]. 2020 Apr 21 [citado 18 de mayo de 2021];369. Disponible en: http:// dx.doi.org/10.1136

  45. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology [Internet]. Nature Research. 2020 [citado 17 de mayo de 2021];20:363-74. Disponible en: https://doi.org/10.1038/

  46. Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-KB pathway in human monocyte macrophages in vitro. Virus Res [Internet]. 2009 Jun [citado 17 de mayo de 2021];142(1-2):19-27. Disponible en: /pmc/ articles/PMC2699111/

  47. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol [Internet]. 2004 Jun [citado 17 de mayo de 2021];203(2):631-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15141377/

  48. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med [Internet]. 2020 May 1 [citado 17 de mayo de 2021];26(5):672-5. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32296168/

  49. Laterra J, Keep R, Betz LA, Goldstein GW. Blood—Brain— Cerebrospinal Fluid Barriers. 1999 [citado 17 de mayo de 2021]; Disponible en: https://www.ncbi.nlm.nih.gov/ books/NBK20434/

  50. Kaur C, Ling EA. The circumventricular organs. Histology and Histopathology [Internet]. 2017 [citado 17 de mayo de 2021];32:879-92. Disponible en: https://pubmed.ncbi.nlm. nih.gov/28177105/

  51. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res [Internet]. 2010 [citado 17 de mayo de 2021];2(1):14. Disponible en: /pmc/articles/PMC2928191/

  52. Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost [Internet]. 2020 Jul 1 [citado 17 de mayo de 2021];18(7):1747-51. Disponible en: https://onlinelibrary. wiley.com/doi/full/10.1111/jth.14854

  53. Sampogna G, Tessitore N, Bianconi T, Leo A, Zarbo M, Montanari E, et al. Spinal cord dysfunction after COVID- 19 infection. Spinal Cord Ser Cases [Internet]. 2020 Dec 1 [citado 17 de mayo de 2021];6(1):1-4. Disponible en: https://doi.org/10.1038/s41394-020-00341-x

  54. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARSCoV- 2). Journal of Medical Virology [Internet]. 2020 [citado 17 de mayo de 2021];92:699-702. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32314810/

  55. Kantonen J, Mahzabin S, Mäyränpää MI, Tynninen O, Paetau A, Andersson N, et al. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathology. 2020;30:1012-6.

  56. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Research [Internet]. 2020 [citado 17 de mayo de 2021];20:355-62. Disponible en: www.nature. com/nri

  57. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020:52(6):910-41.

  58. Kantonen J, Mahzabin S, Mäyränpää MI, Tynninen O, Paetau A, Andersson N, et al. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathology [Internet]. 2020 [citado 17 de mayo de 2021];30:1012-6. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/ bpa.12889

  59. Reichard RR, Kashani KB, Boire NA, Constantopoulos E, Guo Y, Lucchinetti CF. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol [Internet]. 2020 Jul 1 [citado 17 de mayo de 2021];140(1). Disponible en: https://pubmed.ncbi.nlm.nih.gov/32449057/

  60. Solomon T. Neurological infection with SARS-CoV-2 — the story so far. Nature Reviews Neurology [Internet]. 2021 [citado 17 de mayo de 2021];17:65-6. Disponible en: https:// doi.org/10.1038/s41582-020-00453-w

  61. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol [Internet]. 2020 May 1 [citado 17 de mayo de 2021];11. Disponible en: https://pubmed.ncbi.nlm.nih. gov/32425950/

  62. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis [Internet]. 2020 Aug 1 [citado 17 de mayo de 2021];71(15):762-8. Disponible en: /pmc/articles/PMC7108125/?report=abstract

  63. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet [Internet]. 2020 Mar 28 [citado 17 de mayo de 2021];395(10229):1054-62. Disponible en: https://doi. org/10.1016/

  64. Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ [Internet]. 2020 Feb 1 [citado 17 de mayo de 2021];368. Disponible en: https:// www.bmj.com/content/368/bmj.m606

  65. Dantzer R. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiological Reviews [Internet]. 2018 [citado 17 de mayo de 2021];98:477-504. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29351513/

  66. Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, et al. Suppressive myeloid cells are a hallmark of severe COVID-19. medRxiv [Internet]. 2020 [citado 17 de mayo de 2021];19:2020.06.03.20119818. Disponible en: https://doi.org/10.1101/2020.06.03.20119818

  67. Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID- 19. Cell [Internet]. 2020 Sep 17 [citado 17 de mayo de 2021];182(6):1401-1418.e18. Disponible en: /pmc/articles/ PMC7405878/

  68. Eissa M, Abdelhady M, Alqatami H, Salem K, Own A, El Beltagi AH. Spinal cord infarction in a 41-year-old male patient with COVID-19. Neuroradiol J [Internet]. 2021 [citado 17 de mayo de 2021]; Disponible en: https://pubmed. ncbi.nlm.nih.gov/33480310/

  69. Rodríguez de Antonio LA, González-Suárez I, Fernández- Barriuso I, Rabasa Pérez M. Para-infectious anti-GD2/GD3 IgM myelitis during the COVID-19 pandemic: Case report and literature review. Mult Scler Relat Disord [Internet]. 2021 Apr 1 [citado 17 de mayo de 2021];49:102783. Disponible en: /pmc/articles/PMC7826058/

  70. Zachariadis A, Tulbu A, Strambo D, Dumoulin A, Di Virgilio G. Transverse myelitis related to COVID-19 infection. Journal of Neurology [Internet]. 2020 [citado 17 de mayo de 2021];267:3459-61. Disponible en: https://pubmed.ncbi. nlm.nih.gov/32601756/

  71. Munz M, Wessendorf S, Koretsis G, Tewald F, Baegi R, Krämer S, et al. Acute transverse myelitis after COVID-19 pneumonia. Journal of Neurology [Internet]. 2020 [citado 17 de mayo de 2021];267:2196-7. Disponible en: /pmc/ articles/PMC7250275/

  72. de Miranda Henriques-Souza AM, de Melo ACMG, de Aguiar Coelho Silva Madeiro B, Freitas LF, Sampaio Rocha- Filho PA, Gonçalves FG. Acute disseminated encephalomyelitis in a COVID-19 pediatric patient. Neuroradiology [Internet]. 2021 Jan 1 [citado 17 de mayo de 2021];63(1):141-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33001220/

  73. Zhou S, Jones-Lopez EC, Soneji DJ, Azevedo CJ, Patel VR. Myelin Oligodendrocyte Glycoprotein Antibody- Associated Optic Neuritis and Myelitis in COVID-19. J Neuroophthalmol [Internet]. 2020 Sep 1 [citado 17 de mayo de 2021];40(3):398-402. Disponible en: /pmc/articles/ PMC7382408/

  74. Chakraborty U, Chandra A, Ray AK, Biswas P. COVID- 19-associated acute transverse myelitis: A rare entity. BMJ Case Rep [Internet]. 2020 Aug 25 [citado 2021 May 17];13(8). Disponible en: https://pubmed.ncbi.nlm.nih.gov/32843475/

  75. Baghbanian SM, Namazi F. Post COVID-19 longitudinally extensive transverse myelitis (LETM)–a case report. Acta Neurologica Belgica [Internet]. 2020 [citado 17 de mayo de 2021];1:1. Disponible en: /pmc/articles/PMC7500496/

  76. Kumar V, Abbas AK, Aster J. Patología estructural y funcional. España: Elsevier; 2018. p. 121-188.

  77. Caress JB, Castoro RJ, Simmons Z, Scelsa SN, Lewis RA, Ahlawat A, et al. COVID-19–associated Guillain- Barré syndrome: The early pandemic experience. Muscle and Nerve [Internet]. 2020 Oct 1 [citado 17 de mayo de 2021];62(4):485-91. Disponible en: https://pubmed.ncbi. nlm.nih.gov/32678460/

  78. Limphaibool N, Iwanowski P, Holstad MJV, Kobylarek D, Kozubski W. Infectious etiologies of Parkinsonism: Pathomechanisms and clinical implications. Frontiers in Neurology [Internet]. 2019 [citado 17 de mayo de 2021];10:652. Disponible en: www.frontiersin.org

  79. Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet Psychiatry [Internet]. 2020 Jul 1 [citado 17 de mayo de 2021];7(7):611-27. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32437679/

  80. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA - J Am Med Assoc [Internet]. 2010 Oct 27 [citado 17 de mayo de 2021];304(16):1787-94. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20978258/

  81. Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA [Internet]. 2020 [citado 17 de mayo de 2021];324:603-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32644129/

  82. Callard F, Perego E. How and why patients made Long COVID. Soc Sci Med [Internet]. 2021 Jan 1 [citado 17 de mayo de 2021];268. Disponible en: /pmc/articles/PMC7539940/

  83. Goërtz YMJ, Van Herck M, Delbressine JM, Vaes AW, Meys R, Machado FVC, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res [Internet]. 2020 Oct [citado 17 de mayo de 2021];6(4):00542-2020. Disponible en: /pmc/ articles/PMC7491255/

  84. Ladds E, Rushforth A, Wieringa S, Taylor S, Rayner C, Husain L, et al. Persistent symptoms after COVID-19: qualitative study of 114 “long COVID” patients and draft quality principles for services. BMC Health Serv Res [Internet]. 2020 Dec 1 [citado 17 de mayo de 2021];20(1):1-13. Disponible en: https://doi.org/10.1186/s12913-020-06001-y




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Fac Med UNAM . 2021;64

ARTíCULOS SIMILARES

CARGANDO ...