Entrar/Registro  
INICIO ENGLISH
 
Revista de la Facultad de Medicina UNAM
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista de la Facultad de Medicina UNAM >Año 2001, No. 5


Martínez F, Espinosa GMT, García C, Maldonado G, Milán R, Uribe A, Flores HO
Metabolismo energético y esteroidogénico de la placenta humana
Rev Fac Med UNAM 2001; 44 (5)

Idioma: Español
Referencias bibliográficas: 48
Paginas: 201-206
Archivo PDF: 47.70 Kb.


Texto completo




RESUMEN

Las células del sinciciotrofoblasto obtienen el ATP a través de la glucólisis anaerobia. Sin embargo, aunque las mitocondrias de la placenta sintetizan ATP, éste no participa en los procesos citoplasmáticos. Nuestros datos muestran la presencia de una ATP-difosfohidrolsa (apirasa) asociada a las mitocondrias de la placenta, que se inhibe por vanadato y FSBA. En este trabajo proponemos la hipótesis de que la apirasa y el ATP que sintetizan las mitocondrias de las células del sinciciotrofoblasto están asociados al transporte de colesterol necesario para la síntesis de progesterona, y que el uso del ATP y la actividad de la apirasa están asociados a los puntos de unión mitocondriales.


Palabras clave: Placenta humana, metabolismo del ATP, síntesis de progesterona, transporte de colesterol, ATP-difosfohidrolasa, fosforilación de proteínas.


REFERENCIAS

  1. Martínez F, Strauss JF III. Regulation of mitochondrial cholesterol metabolism. En: Subcellular Biochemistry, Cap. 8, Vol. 28: Cholesterol, its Metabolism and Functions in Biology and Medicine. Plenum Press, N.Y., USA 1997: 205-234.

  2. Strauss JF III, Martínez F, Kiriakidou M. Placental steroid hormone synthesis: unique features and unanswered questions. Biol Reprod 1996, 54: 303-311.

  3. Ringler GE, Kao LC, Miller WL, Strauss JF III. Effects of 8-bromocAMP on expression of endocrine functions by cultured human trophoblast cells. Regulation of specific mRNAs. Mol Cell Endocrinol 1989, 61: 13-21.

  4. Strauss JF III, Kido S, Sayegh R, Sakuragi N, Gafvels ME. The cAMP signalling system and human trophoblast function. Placenta 1992, 13: 389-403.

  5. Négrié C, Triadou N, Michel O, Bouhnik J, Michel R. Oxidative phosphorylation reactions and cholesterol hydroxylation mechanisms in human term placental mitochondria. J Steroid Biochem 1979, 11: 1135-40.

  6. Simpson ER, Miller DA. Cholesterol side-chain cleavage, cytochrome P450, and iron-sulfur protein in human placental mitochondria. Arch Biochem Biophys 1978, 190: 800-808.

  7. Meigs RA, Ryan KJ. Cytochrome P-450 and steroid biosynthesis in the human placenta. Biochim Biophys Acta 1968, 165: 476-82.

  8. Cammer W, Estabrook RW. Spectrophotometric studies of the pigments of adrenal cortex mitochondria. Arch Biochem Biophys 1967, 122: 735-747.

  9. Harding BW, Nelson DH. Electron carriers of the bovine adrenal cortical respiratory chain and hydroxylating pathways. J Biol Chem 1966, 241: 2212-2219.

  10. Hanukoglu I, Hanukoglu Z. Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation. Eur J Biochem 1986, 157: 27-31.

  11. Jefcoate CR, Simpson ER, Boyd GS, Brownie AC, Orme-Johnson WH (1973) The detection of different states of the P-450 cytochromes in adrenal mitochondria: changes induced by ACTH. Ann NY Acad Sci USA 1987; 212: 243-61.

  12. Ingermann RL. Control of placental glucose transfer. Placenta, 8, 557-571.

  13. Johnson LW, Smith CH. Glucose transport across the basal plasma membrane of human placental syncytiotrophoblast. Biochimica et Biophysica Acta 1985; 815: 44-50.

  14. Hanguel S, Dezmaizieres V, Challier JC. Glucose uptake, utilization, and transfer by the human placenta as functions of maternal glucose concentration. Pediatric Research 1986, 20: 269-273. Schneider AB, Challier JC, Danceis J. Transfer and metabolism of glucose and lactate in the human placenta studied by a perfusion system in vitro. Placenta 1981; Supp 2: 129-138.

  15. Ville CA. The metabolism of human placenta in vitro. J Biol Chem 1953; 205: 113-123.

  16. Barash V, Reskin A, Shafrir E, Waddell ID, Burchell A. Kinetic and immunologic evidence for the absence of glucose-6-phosphatase in early human chorionic villi and term human placenta. Biochim Biophys Acta 1991; 1073: 161-167.

  17. Matalon R, Michals K. Gluconeogenic enzymes in the human placenta.J Inher Metab Dis 1984; 7: 179-181.

  18. Prendergast CH, Parker KH, Gray R, Venkatesan S, Bannister P, Castro-Soares J, Murphy KW, Beard RW, Regan L, Robinson S Steer P, Halliday D, Johnston DG. Glucose production by the human placenta in vivo. Placenta 1999; 20: 591-598.

  19. Matsubara S, Takizawa T, Sato I. Glucose-6-phosphatase is present in normal and pre-eclamptic placental trophoblasts: ultrastructural enzyme-histochemical evidence. Placenta 1999; 20: 81-85.

  20. Battaglia FC. An update of fetal and placental metabolism: carbohydrate and amino acids. Biology of the Neonate 1989; 55: 347-354.

  21. Piquard F, Schaefer A, Dellenbach P, Haberey P. Lactate movements in the human placenta in situ. Biology of the Neonate 1990; 58: 61-68.

  22. Desoye G, Shafrir E. Placental metabolisms and its regulation in health and diabetes. Mol Aspects Med 1994; 15: 505-682.

  23. Shelley HJ. Transfer of carbohydrates. In: Placental transfer, GVP Chamberlain, AW Wilkinson (eds), Tunbridge Wells, Pitman Medical 1979: 118-1412.

  24. Moe AJ, Farmer DR, Nelson DM, Smith CH. Pentose phosphate pathway in cellular trophoblast from full-term human placentas. Am J Physiol 1991, 261 CellPhysiol 30: C1042-C1047.

  25. Carter AM. Placental oxygen consumption. Part I: in vivo studies-a review. Placenta 2000, 21 Suppl A: S31-37.

  26. Coleman RA. Placental metabolism and transport of lipids. Federation Proceedings 1986; 45: 2519-2523.

  27. Coleman RA, Haynes EB. Synthesis and release of fatty acids by human trophoblast cells in culture. J Lipid Res 1987; 28: 1335-1341.

  28. Freinkel N. Effects of the conceptus on maternal metabolism duringpregnancy. In: On the nature and treatment of diabetes. 1st edn. BS Leibel, GA Wrenshall (eds), Amsterdam, Exerpta Medica Foundation 1965: 679-691.

  29. Young MPA, Schneider H. Metabolic integrity of the isolated perfused lobule of human placenta. Placenta 1984; 5: 95-104.

  30. Martínez F, Chávez E, Echegoyen S. Decreased exchange of adenine nucleotides in human placental mitochondria. Int J Biochem 1987; 19: 275-279.

  31. Bloxam DL, Bobinski PM. Energy metabolism and glycolysis in the human placenta during ischaemia and in normal labour. Placenta 1984; 5: 381-94.

  32. Martínez F, Espinosa-García MT, Flores-Herrera O, Pardo JP. Respiratory control induced by ATP in human term placental mitochondria. Placenta 1993; 14: 321-331.

  33. Martínez F, Meaney A, Espinosa-García MT, Pardo JP, Flores-Herrera O. Characterization of the F1F0-ATPase and the thightly-bound atpase activities in submitochondrial particles from human term placenta. Placenta 1996; 17: 345-350.

  34. Flores-Herrera O, Uribe A, Pardo JP, Martínez F. A novel ATP-diphosphohydrolase from human term placental mitochondria. Placenta 1999; 20: 475-484.

  35. Martínez F, Pardo JP, Flores-Herrera O, Espinosa-García MT. The effect of osmolarity on some functions from human term placental mitochondria. Int J Biochem Cell Biol 1995; 27: 795-803.

  36. Navarrete J, Flores-Herrera O, Uribe A, Martínez F. Differences in cholesterol incorporation into mitochondria from hepatoma AS-30D and human term placenta. Placenta 1999; 20: 285-291.

  37. Xu X, Xu T, Robertson DG, Lamberth JD. GTP stimulates pregnenolone generation in isolated rat adrenal mitochondria. J Biol Chem 1989; 264: 17674-17680.

  38. Schroder HJ, Power GG. Engine and radiator: fetal and placental interactions for heat dissipation. Exp Physiol 1997; 82: 403-414.

  39. Ball KT, Gunn TR, Power GG, Asakura H, Gluckman PD. A potential role for adenosine in the inhibition of nonshivering thermogenesis in the fetal sheep. Pediatr Res 1995; 37: 303-309.

  40. Stocco DM. Intramitochondrial cholesterol transfer. Biochim Biophys Acta 2000; 1486: 184-197.

  41. Brdiczka D. Function of the outer mitochondrial compartment in regulation of energy metabolism. Biochim Biophys Acta 1994; 1187: 264-9.

  42. Jensen RE, Kinnally KW. The mitochondrial protein import pathway: are precursors imported through membrane channels? J Bioenerg Biomembr 1997; 29: 3-10.

  43. Duglas MG, Smagula CS, Chen WJ. Mitochondrial import of proteins. In: Intracellular trafficking of proteins. Ed. Steer CJ, Hanover JA, Cambridge University Press, Cambridge 1991: 658-696.

  44. Jefcoate CR, McNamara BC, Artemenko I, Yamazaki T. Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis. J Steroid Biochem Molec Biol 1992; 43: 751-767.

  45. Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr Rev 1993; 14: 222-40.

  46. Culty M, Li H, Boujrad N, Amri H, Vidic B, Bernassau JM, Reversat JL, Papadopoulos V. In vitro studies on the role of the peripheraltype benzodiazepine receptor in steroidogenesis. J Steroid Biochem Mol Biol 1999; 69: 123-30.

  47. Espinosa-García MT, Struss JF III, Martínez F. A trypsin-sensitive protein is required for utilization of exogenous cholesterol for pregnenolone synthesis by placental mitochondria. Placenta 2000; 21: 654-660.

  48. Schneider H, Malek A, Duft R, Bersinger N. Evaluation of an in vitro dual perfusion system for the study of placental proteins: energy metabolism. In: Placenta as a model and a source, O. Genbacev, A. Klopper & R Beaconsfield (eds), Plenum Press, New York, USA 1988: 39-50.



>Revistas >Revista de la Facultad de Medicina UNAM >Año2001, No. 5
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019