medigraphic.com
ENGLISH

Revista Mexicana de Urología

Organo Oficial de la Sociedad Mexicana de Urología
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 4

Siguiente >>

Rev Mex Urol 2021; 81 (4)


Caracterización citogenética y molecular en tejido gonadal de pacientes con síndrome ovotesticular y disgenesia gonadal 46,XY y 46,XX

Manotas MC, García-Acero M, González D, Bernal C, Guerra M, Moreno-Niño O, Suárez F, Céspedes C, Forero C, Pérez J, Rojas A
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 50
Paginas:
Archivo PDF: 848.20 Kb.


PALABRAS CLAVE

Disgenesia gonadal, síndrome ovotesticular, FISH, MLPA, aCGH, SRY.

RESUMEN

Objetivos: La etiología de la disgenesia gonadal y el síndrome ovotesticular se desconoce en la mayoría de los casos. Para realizar la caracterización citogenética y molecular de un grupo de pacientes con síndrome ovotesticular y disgenesia gonadal completa a partir de muestras de sangre periférica y tejido gonadal.
Material y métodos: Se incluyeron un total de 6 pacientes, 3 con diagnóstico de síndrome ovotesticular 46, XX, uno diagnosticado con 46, XY síndrome ovotesticular; uno con sospecha de disgenesia gonadal 46, XX y otro con disgenesia gonadal completa 46, XY.
Resultados: Todos los pacientes fueron evaluados con cariotipo, hibridación in situ fluorescente (FISH) para SRY, amplificación de sonda dependiente de ligación múltiple (MLPA) e hibridación genómica comparativa (aCGH) en muestras de sangre periférica. En los casos con tejido gonadal disponible, los niveles de expresión genética de SOX3, SRY y SOX9 se determinaron mediante PCR en tiempo real e inmunofluorescencia. Se descartaron reordenamientos relacionados con el gen SRY. No se detectaron deleciones/duplicaciones o variaciones en el número de copias (NVC) como etiología del trastorno del desarrollo sexual en ninguno de los pacientes estudiados. En un caso de síndrome ovotesticular 46, XX, el cariotipo gonadal era diferente del cariotipo en sangre periférica. Se observó expresión aberrante de SOX3 y SOX9 en tejido gonadal de un caso con síndrome ovotesticular 46, XX.
Conclusiones: Se documentaron niveles más bajos de expresión de SRY y SOX9 en comparación con los niveles en líneas celulares humanas de testículo embrionario y Sertoli en el tejido gonadal de un caso con síndrome ovotesticular 46, XY. Los estudios citogenéticos y moleculares de las gónadas como complemento del estudio de sangre periférica tienen el potencial de enriquecer la comprensión de los trastornos del desarrollo sexual en pacientes que son XX o XY en sangre periférica.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Snell DM, Turner JMA. Sex Chromosome Effects on Male-Female Differences in Mammals. Curr Biol. 2018;28(22):R1313–24. doi: 10.1016/j.cub.2018.09.018

  2. Ngun TC, Ghahramani N, Sánchez FJ, Bocklandt S, Vilain E. The genetics of sex differences in brain and behavior. Front Neuroendocrinol. 2011;32(2):227–46. doi: 10.1016/j.yfrne.2010.10.001

  3. Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10(11):673–83. doi: 10.1038/nrendo.2014.163

  4. García-Acero M, Moreno O, Suárez F, Rojas A. Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. CUR. 2019;13(4):169–78. doi: 10.1159/000499274

  5. Li Y, Zheng M, Lau Y-FC. The sexdetermining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep. 2014;8(3):723–33. doi: 10.1016/j. celrep.2014.06.055

  6. Knower KC, Kelly S, Ludbrook LM, Bagheri- Fam S, Sim H, Bernard P, et al. Failure of SOX9 regulation in 46XY disorders of sex development with SRY, SOX9 and SF1 mutations. PLoS One. 2011;6(3):e17751. doi: 10.1371/journal. pone.0017751

  7. Kanai Y, Koopman P. Structural and functional characterization of the mouse Sox9 promoter: implications for campomelic dysplasia. Hum Mol Genet. 1999;8(4):691–6. doi: 10.1093/ hmg/8.4.691

  8. Lin L, Achermann JC. Steroidogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis development. Sex Dev. 2008;2(4–5):200–9. doi: 10.1159/000152036

  9. Klattig J, Sierig R, Kruspe D, Besenbeck B, Englert C. Wilms’ Tumor Protein Wt1 Is an Activator of the Anti-Müllerian Hormone Receptor Gene Amhr2. Mol Cell Biol. 2007;27(12):4355–64. doi: 10.1128/ MCB.01780-06

  10. Wilhelm D, Englert C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev. 2002;16(14):1839–51. doi: 10.1101/gad.220102

  11. Park SY, Meeks JJ, Raverot G, Pfaff LE, Weiss J, Hammer GD, et al. Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development. 2005;132(10):2415–23. doi: 10.1242/dev.01826

  12. García-Acero M, Molina M, Moreno O, Ramirez A, Forero C, Céspedes C, et al. Gene dosage of DAX-1, determining in sexual differentiation: duplication of DAX-1 in two sisters with gonadal dysgenesis. Mol Biol Rep. 2019;46(3):2971–8. doi: 10.1007/s11033-019-04758-y

  13. Cederroth CR, Pitetti J-L, Papaioannou MD, Nef S. Genetic programs that regulate testicular and ovarian development. Mol Cell Endocrinol. 2007;265–266:3–9. doi: 10.1016/j. mce.2006.12.029

  14. Lee PA, Houk CP, Ahmed SF, Hughes IA, International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics. 2006;118(2):e488-500. doi: 10.1542/peds.2006-0738

  15. Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The Genetic and Environmental Factors Underlying Hypospadias. Sex Dev. 2015;9(5):239–59. doi: 10.1159/000441988

  16. Kohmanaee S, Dalili S, Rad AH. Pure gonadal dysgenesis (46 XX type) with a familial pattern. Adv Biomed Res. 2015; 4:162. doi: 10.4103/2277-9175.162536

  17. Özdemir M, Kavak RP, Yalcinkaya I, Guresci K. Ovotesticular Disorder of Sex Development: An Unusual Presentation. J Clin Imaging Sci. 2019; 9:34. doi: 10.25259/JCIS_45_2019

  18. Moshiri M, Chapman T, Fechner PY, Dubinsky TJ, Shnorhavorian M, Osman S, et al. Evaluation and management of disorders of sex development: multidisciplinary approach to a complex diagnosis. Radiographics. 2012;32(6):1599–618. doi: 10.1148/ rg.326125507

  19. Hersmus R, de Leeuw BHCGM, Stoop H, Bernard P, van Doorn HC, Brüggenwirth HT, et al. A novel SRY missense mutation affecting nuclear import in a 46,XY female patient with bilateral gonadoblastoma. Eur J Hum Genet. 2009;17(12):1642–9. doi: 10.1038/ejhg.2009.96

  20. Rocha VBC, Guerra-Júnior G, Marques-de- Faria AP, de Mello MP, Maciel-Guerra AT. Complete gonadal dysgenesis in clinical practice: the 46, XY karyotype accounts for more than one third of cases. Fertil Steril. 2011;96(6):1431–4. doi: 10.1016/j.fertnstert.2011.09.009

  21. Mohnach L, Fechner PY, Keegan CE. Nonsyndromic Disorders of Testicular Development. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993.

  22. Werner R, Merz H, Birnbaum W, Marshall L, Schröder T, Reiz B, et al. 46,XY Gonadal Dysgenesis due to a Homozygous Mutation in Desert Hedgehog (DHH) Identified by Exome Sequencing. J Clin Endocrinol Metab. 2015;100(7):E1022–9. doi: 10.1210/jc.2015- 1314

  23. Granados A, Alaniz VI, Mohnach L, Barseghyan H, Vilain E, Ostrer H, et al. MAP3K1- related gonadal dysgenesis: Six new cases and review of the literature. Am J Med Genet C Semin Med Genet. 2017;175(2):253–9. doi: 10.1002/ajmg.c.31559

  24. Barbaro M, Balsamo A, Anderlid BM, Myhre AG, Gennari M, Nicoletti A, et al. Characterization of deletions at 9p affecting the candidate regions for sex reversal and deletion 9p syndrome by MLPA. Eur J Hum Genet. 2009;17(11):1439–47. doi: 10.1038/ejhg.2009.70

  25. Délot EC, Vilain EJ. Nonsyndromic 46,XX Testicular Disorders of Sex Development. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993.

  26. Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. American Journal of Medical Genetics Part A. 2012;158A (7):1759–64. doi: 10.1002/ajmg.a.35390

  27. Haines B, Hughes J, Corbett M, Shaw M, Innes J, Patel L, et al. Interchromosomal insertional translocation at Xq26.3 alters SOX3 expression in an individual with XX male sex reversal. J Clin Endocrinol Metab. 2015;100(5):E815-820. doi: 10.1210/jc.2014-4383

  28. Baetens D, Stoop H, Peelman F, Todeschini A-L, Rosseel T, Coppieters F, et al. NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development. Genet Med. 2017;19(4):367–76. doi: 10.1038/ gim.2016.118

  29. Araujo FC, Milsted A, Watanabe IKM, Del Puerto HL, Santos RAS, Lazar J, et al. Similarities and differences of X and Y chromosome homologous genes, SRY and SOX3, in regulating the renin-angiotensin system promoters. Physiol Genomics. 2015;47(5):177– 86. doi: 10.1152/physiolgenomics.00138.2014

  30. Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest. 2011;121(1):328–41. doi: 10.1172/ JCI42580

  31. Swartz JM, Ciarlo R, Guo MH, Abrha A, Weaver B, Diamond DA, et al. A 46,XX Ovotesticular Disorder of Sex Development Likely Caused by a Steroidogenic Factor-1 (NR5A1) Variant. HRP. 2017;87(3):191–5. doi: 10.1159/000452888

  32. Eser M, Ayaz A. Haploinsufficiency of the DMRT Gene Cluster in a Case with 46,XY Ovotesticular Disorder of Sexual Development. Balkan Med J. 2018;35(3):272–4. doi: 10.4274/ balkanmedj.2017.0378

  33. García-Acero M, Moreno-Niño O, Suárez- Obando F, Molina M, Manotas MC, Prieto JC, et al. Disorders of sex development: Genetic characterization of a patient cohort. Molecular Medicine Reports. 2020;21(1):97–106. doi: 10.3892/mmr.2019.10819

  34. Moorhead PS, Nowell PC, Mellman WJ, Battips DM, Hungerford DA. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res. 1960;20:613–6. doi: 10.1016/0014-4827(60)90138-5

  35. Tannour-Louet M, Han S, Corbett ST, Louet J-F, Yatsenko S, Meyers L, et al. Identification of De Novo Copy Number Variants Associated with Human Disorders of Sexual Development. PLOS ONE. 2010;5(10):e15392. doi: 10.1371/ journal.pone.0015392

  36. Vidal VP, Chaboissier MC, de Rooij DG, Schedl A. Sox9 induces testis development in XX transgenic mice. Nat Genet. 2001;28(3):216–7. doi: 10.1038/90046

  37. Hou J, Shi X, Chen C, Islam MS, Johnson AF, Kanno T, et al. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. PNAS. 2018;115(48):E11321– 30. doi: 10.1073/pnas.1807796115

  38. Kamel AK, Abd El-Ghany HM, Mekkawy MK, Makhlouf MM, Mazen IM, El Dessouky N, et al. Sex Chromosome Mosaicism in the Gonads of DSD Patients: A Karyotype/Phenotype Correlation. Sex Dev. 2015;9(5):279–88. doi: 10.1159/000442332

  39. McClelland K, Bowles J, Koopman P. Male sex determination: insights into molecular mechanisms. Asian J Androl. 2012;14(1):164– 71. doi: 10.1038/aja.2011.169

  40. Barsoum I, Yao HHC. Redundant and differential roles of transcription factors Gli1 and Gli2 in the development of mouse fetal Leydig cells. Biol Reprod. 2011;84(5):894–9. doi: 10.1095/biolreprod.110.088997

  41. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008 Sep 15;22(18):2454–72. doi: 10.1101/gad.1693608

  42. Giroux-Leprieur E, Costantini A, Ding VW, He B. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance. Int J Mol Sci. 2018;19(9):2835. doi: 10.3390/ ijms19092835

  43. Breehl L, Caban O. Genetics, Gonadal Dysgenesis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.

  44. Kojima Y, Hayashi Y, Mizuno K, Sasaki S, Fukui Y, Koopman P, et al. Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males. Clin Endocrinol (Oxf). 2008;68(5):791–9. doi: 10.1111/j.1365-2265.2007.03101.x

  45. Eggers S, Sinclair A. Mammalian sex determination—insights from humans and mice. Chromosome Res. 2012;20(1):215–38. doi: 10.1007/s10577-012-9274-3

  46. Tanaka SS, Nishinakamura R. Regulation of male sex determination: genital ridge formation and Sry activation in mice. Cell Mol Life Sci. 2014;71(24):4781–802. doi: 10.1007/s00018- 014-1703-3

  47. Délot E, Vilain E. Disorders of Sex Development. In: Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management: Elsevier; 2018.

  48. Lau Y-FC, Li Y, Kido T. Gonadoblastoma locus and the TSPY gene on the human Y chromosome. Birth Defects Res C Embryo Today. 2009;87(1):114–22. doi: 10.1002/ bdrc.20144

  49. Kido T, Lau Y-FC. Roles of the Y chromosome genes in human cancers. Asian J Androl. 2015;17(3):373–80. doi: 10.4103/1008- 682X.150842

  50. Wang H, Zhang L, Wang N, Zhu H, Han B, Sun F, et al. Next-generation sequencing reveals genetic landscape in 46, XY disorders of sexual development patients with variable phenotypes. Hum Genet. 2018;137(3):265–77. doi: 10.1007/ s00439-018-1879-y




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Urol. 2021;81

ARTíCULOS SIMILARES

CARGANDO ...