medigraphic.com
ENGLISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 3

<< Anterior Siguiente >>

Rev Cubana Plant Med 2020; 25 (3)


Actividad bactericida in vitro de Chenopodium quinoa Willd. y Artemisia dracunculus L. sobre bacterias patógenas

Marín SBM, Hincapié LCA, Cardona AML
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 39
Paginas:
Archivo PDF: 189.74 Kb.


PALABRAS CLAVE

antibacteriano, pruebas de sensibilidad microbiana, extractos vegetales, Chenopodium quinoa Willd., Artemisia dracunculus L.

RESUMEN

Introducción: El uso indiscriminado de antibióticos en el tratamiento de infecciones causadas por bacterias ha generado cepas bacterianas resistentes, lo que ha motivado la búsqueda de alternativas para su control. Algunas de estas son los extractos vegetales de Chenopodium quinoa Willd. y Artemisia dracunculus L, los cuales han demostrado tener potencial como bactericidas y son cultivadas comercialmente en Colombia y países vecinos.
Objetivos: Definir la actividad antibacterial de extractos de semilla de C. quinoa (quinua) y de hojas de A. dracunculus (estragón ruso).
Métodos: Se realizó la extracción a partir de semillas de C. quinoa y hojas de A. dracunculus a través del método de maceración a temperatura ambiente. Los solventes usados fueron metanol, hexano y acetato de etilo. Los tres tipos de extractos obtenidos se evaluaron sobre Staphylococcus aureus ATCC® 6538™ y Escherichia coli ATCC® 25922™, a través de los métodos de difusión en pozo, Concentración Mínima Inhibitoria y Concentración Mínima Bactericida.
Resultados: El extracto metanólico de A. dracunculus, con una concentración de 0,02 g/mL, generó diámetros promedio de inhibición de 30,67 mm para E. coli y de 32 mm para S. aureus. Con la misma concentración, el extracto metanólico de C. quinoa generó diámetros promedio de inhibición de 28,33 mm para S. aureus y de 30 mm para E. coli. Las cepas de ambas bacterias registraron sensibilidad alta (0,01 g/mL) frente al extracto de A. dracunculus. Para el extracto de C. quinoa las cepas de S. aureus (0,05 g/mL) y E. coli (0,1 g/mL) presentaron sensibilidad baja.
Conclusiones: La Concentración Mínima Inhibitoria y la Concentración Mínima Bactericida de los extractos metanólicos de ambas plantas fueron iguales, lo cual clasifica su actividad como bactericida contra las cepas de los microorganismos evaluados. El extracto de A. dracunculus muestra mayor potencial dado que los microrganismos presentaron alta sensibilidad frente al mismo.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Fonnegra Gómez R, Jiménez Ramírez SL. Plantas medicinales aprobadas en Colombia. 2a ed. Colombia, Editorial Universidad de Antioquia; 2006.

  2. Buitrago H, Palacios G, Moreno LP, Hincapié CA. Estudio etnobotánico de plantas medicinales en tres municipios de Antioquia, Colombia. Rev Cuba Plantas Med. 2018[acceso:26/06/2019];23(4). Disponible en: http://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/665

  3. Schwarz S, Loeffler A, Kadlec K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Advances in Veterinary Dermatology. 2017:95–110. DOI: http://doi.wiley.com/10.1002/9781119278368.ch5.1

  4. Pereira E, Encina-Zelada C, Barros L, Gonzales-Barron U, Cadavez V, Ferreira I. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chem. 2019[acceso:26/02/2019];280:110–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814618321721

  5. Pellegrini M, Lucas-Gonzales R, Ricci A, Fontecha J, Fernández-López J, PérezÁlvarez JA, et al. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind Crops Prod. 2018[acceso:26/02/2019];111:38–46. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669017306829

  6. Díaz-Valencia YK, Alca JJ, Calori-Domínguez MA, Zanabria-Galvez SJ, Cruz SH. Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nov Biotechnol Chim. 2018[acceso:26/02/2019];17(1):74–85. Disponible en: http://content.sciendo.com/view/journals/nbec/17/1/article-p74.xml

  7. Han Y, Chi J, Zhang M, Zhang R, Fan S, Dong L, et al. Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa willd) during milling process. LWT. 2019[acceso:26/06/2019];114:108381. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0023643819307236

  8. Hu Y, Zhang J, Zou L, Fu C, Li P, Zhao G. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int J Biol Macromol. 2017[acceso:29/07/2019];99:622–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813016322954

  9. Miranda M, Delatorre-Herrera J, Vega-Gálvez A, Jorquera E, Quispe-Fuentes I, Martínez EA. Antimicrobial Potential and Phytochemical Content of Six Diverse Sources of Quinoa Seeds (Chenopodium quinoa Willd.). Agric Sci. 2014[acceso:29/07/2019];05(11):1015–24. Disponible en: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/as.2014.511110

  10. Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P. Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind Crops Prod. 2020[acceso:08/07/2020];149:112350. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669020302661

  11. Sun X, Yang X, Xue P, Zhang Z, Ren G. Improved antibacterial effects of alkalitransformed saponin from quinoa husks against halitosis-related bacteria. BMC Complement Altern Med. 2019[acceso:08/07/2020];19(1):46. Disponible en: https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019- 2455-2

  12. Vega-Gálvez A, Zura L, Lutz M, Jagus R, Victoria Agüero M, Pastén A, et al. Assessment of dietary fiber, isoflavones and phenolic compounds with antioxidant and antimicrobial properties of quinoa (Chenopodium quinoa Willd.). Chil J Agric Anim Sci. 2018[acceso:26/06/2019];34(1):57–67. Disponible en: https://scielo.conicyt.cl/pdf/chjaasc/v34n1/0719-3890-chjaasc-00101.pdf

  13. Monsalve JMR, Rodríguez MC, Llanos CAH. Optimization of the process of freezedrying and comparison with convective driying of Russian tarragon (Artemisia Dracunculus L.). Acta Agronómica. 2019[acceso:26/08/2019];68(3). Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/75296

  14. Taleghani A, Emami SA, Tayarani-Najaran Z. Artemisia: a promising plant for the treatment of cancer. Bioorganic Med Chem. 2020[acceso:26/06/2019];28(1). Disponible en: https://www.sciencedirect.com/science/article/pii/S0968089619308053

  15. Méndez-del Villar M, Puebla-Pérez AM, Sánchez-Peña MJ, González-Ortiz LJ, Martínez-Abundis E, González-Ortiz M. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance. J Med Food. 2016[acceso:29/07/2019];19(5):481–5. Disponible en: http://www.liebertpub.com/doi/10.1089/jmf.2016.0005

  16. Eidi A, Oryan S, Zaringhalam J, Rad M. Antinociceptive and anti-inflammatory effects of the aerial parts of Artemisia dracunculus in mice. Pharm Biol. 2016[acceso:29/07/2019];54(3):549–54. Disponible en: http://www.tandfonline.com/doi/full/10.3109/13880209.2015.1056312

  17. Samra MA, Babak B. Examining the antibacterial activity of Artemisia dracunculus L. extracts using different methods of extraction. Int J Mol Clin Microbiol. 2016[acceso:26/07/2019];6(1):629–34. Disponible en: https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=516856

  18. Behbahani BA, Shahidi F, Yazdi FT, Mortazavi SA, Mohebbi M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J Food Meas Charact. 2017[acceso:28/06/2019];11(2):847–63. Disponible en: http://link.springer.com/10.1007/s11694-016-9456-3

  19. Liu T, Lin P, Bao T, Ding Y, Lha Q, Nan P, et al. Essential oil composition and antimicrobial activity of Artemisia dracunculus L. var. qinghaiensis Y. R. Ling (Asteraceae) from Qinghai-Tibet Plateau. Ind Crops Prod. 2018[acceso:28/06/2019];125:1–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669018307842

  20. López Pino BE, Arroyave Sosa CP, Londoño Pérez DM, López Naranjo DF, Cardona Aristizábal ML, Hincapié Llanos CA. Actividad antimicrobiana in vitro de los extractos de Tithonia diversifolia (Hemsl) A. Gray (botón de oro) y Ageratum conyzoides L. (marrubio). Rev Cuba Plantas Med. 2018[acceso:08/10/2019];23(3). Disponible en: http://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/57

  21. Amensour M, Bouhdid S, Fernández-López J, Idaomar M, Senhaji NS, Abrini J. Antibacterial Activity of Extracts of Myrtus communis Against Food-Borne Pathogenic and Spoilage Bacteria. Int J Food Prop. 2010[acceso:29/07/2019];13(6):1215–24. Disponible en: https://www.tandfonline.com/doi/full/10.1080/10942910903013399

  22. Raeisi M, Tajik H, Razavi RS, Maham M, Moradi M, Hajimohammadi B, et al. Essential oil of tarragon (Artemisia dracunculus) antibacterial activity on Staphylococcus aureus and Escherichia coli in culture media and Iranian white cheese. Iran J Microbiol. 2012[acceso:13/07/2018];4(1):30–4. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22783458

  23. Cabrera CE, Gómez RF, Zúñiga AE. La resistencia de bacterias a antibióticos, antisépticos y desinfectantes una manifestación de los mecanismos de supervivencia y adaptación. Colomb Med. 2007[acceso:26/08/2019];38:149–58. Disponible en: http://www.scielo.org.co/pdf/cm/v38n2/v38n2a07.pdf

  24. Bernal Sepúlveda R, Rodríguez Haro I, Salazar Castillo M. Efecto del extracto hidroalcohólico de Punica granatum sobre la viabilidad de Staphylococcus aureus y Pseudomonas aeruginosa in vitro. REBIOLEST. 2014[acceso:26/06/2019];2(1). Disponible en: https://revistas.unitru.edu.pe/index.php/ECCBB/article/view/639

  25. Park JH, Lee YJ, Kim YH, Yoon KS. Antioxidant and Antimicrobial Activities of Quinoa (Chenopodium quinoa Willd.) Seeds Cultivated in Korea. Prev Nutr food Sci. 2017[acceso:26/02/2019];22(3):195–202. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29043217

  26. Rodríguez S. Eficacia antibacteriana del extracto de Chenopodium quínoa Willd “Quinua” sobre la cepa de Escherichia coli, estudio in vitro. Universidad César Vallejo. 2016[acceso:26/06/2019]. Disponible en: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/589/rodriguez_ms.pdf?sequenc e=1&isAllowed=y

  27. Toribio MS, Oriani S, Toso RE, Tortone C, Fernández J. Staphylococcus aureus sensible a extractos metanólicos obtenidos de plantas nativas de la provincia de la Pampa, Argentina. Cienc Vet. 2009[acceso:06/03/2019];11(1):14–8. Disponible en: https://cerac.unlpam.edu.ar/index.php/veterinaria/article/view/1877

  28. Maiyo ZC, Ngure RM, Matasyoh JC, Chepkorir R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. African J Biotechnol. 2010[acceso:26/06/2019];9(21):3178–82. Disponible en: https://www.ajol.info/index.php/ajb/article/view/80592

  29. Benli M, Kaya I, Yigit N. Screening antimicrobial activity of various extracts of Artemisia dracunculus L. Cell Biochem Funct. 2007[acceso:28/06/2019];25(6):681–6. Disponible en: https://link.springer.com/article/10.1007/s11694-016-9456-3

  30. Ahameethunisa AR, Hopper W. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. BMC Complement Altern Med. 2010[acceso:13/07/2018];10(1):6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/20109237

  31. Sharafati Chaleshtori R, Rokni N, Razavilar V, Rafieian Kopaei M. The Evaluation of the Antibacterial and Antioxidant Activity of Tarragon (Artemisia dracunculus L.) Essential Oil and Its Chemical Composition. Jundishapur J Microbiol. 2013[acceso:26/06/2019];6(9):2–5. Disponible en: https://sites.kowsarpub.com/jjm/articles/18591.html

  32. Ait Sidi Brahim M, Fadli M, Hassani L, Boulay B, Markouk M, Bekkouche K, et al. Chenopodium ambrosioides var. ambrosioides used in Moroccan traditional medicine can enhance the antimicrobial activity of conventional antibiotics. Ind Crops Prod. 2015[acceso:26/06/2019];71:37–43. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669015002575

  33. Hossain MA, Al-Abri THA, Al-Musalami AHS, Akhtar MS, Said S. Evaluation of different extraction methods on antimicrobial potency of Adenium obesum stem against food borne pathogenic bacterial strains in Oman. Asian Pacific J Trop Dis. 2014[acceso:12/06/2019];4(S2):S985–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2222180814607702

  34. Repo-Carrasco-Valencia R, Hellström JK, Pihlava J-M, Mattila PH. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010[acceso:20/05/2019];120(1):128–33. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814609011662

  35. Farajzadeh Z, Shakerian A, Rahimi E, Bagheri M. Chemical, Antioxidant, Total Phenolic and Flavonoid Components and Antimicrobial Effects of Different Species of Quinoa Seeds. Egypt J Vet Sci. 2020[acceso:10/09/2020];51(1):43–54. Disponible en: https://ejvs.journals.ekb.eg/article_53914.html

  36. Obolskiy D, Pischel I, Feistel B, Glotov N, Heinrich M. Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J Agric Food Chem. 2011[acceso:29/07/2019];59(21):11367–84. Disponible en: https://pubs.acs.org/doi/10.1021/jf202277w

  37. Juneja VK, Dwivedi HP, Yan X. Novel Natural Food Antimicrobials. Annu Rev Food Sci Technol. 2012[acceso:29/07/2019];3(1):381–403. Disponible en: http://www.annualreviews.org/doi/10.1146/annurev-food-022811-101241

  38. Kalogeropoulos N, Konteles SJ, Troullidou E, Mourtzinos I, Karathanos VT. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009[acceso:26/06/2019];116(2):452– 61. Disponible en https://www.sciencedirect.com/science/article/abs/pii/S0308814609002490

  39. Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004[acceso:12/07/2019];94(3):223–53. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15246235




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2020;25

ARTíCULOS SIMILARES

CARGANDO ...