2019, Número 3
Siguiente >>
Biotecnol Apl 2019; 36 (3)
Análisis del polimorfismo genético en líneas de soya [Glycine max (L.) Merr.] resistentes a glifosato
Delgado C, Corrales O, Hernández Y, Soto N, Ferreira A, Jiménez OR, Enríquez GA
Idioma: Ingles.
Referencias bibliográficas: 38
Paginas: 3301-3306
Archivo PDF: 717.06 Kb.
RESUMEN
El Programa de Mejoramiento Genético de la Soya [Glycine max (L.) Merr.] en Cuba se ha enfocado en mejorar el rendimiento y adicionar nuevos caracteres para un mejor manejo del cultivo. Este programa incluye la introgresión del evento de transformación GTS 40-3-2 en líneas avanzadas para conferir resistencia al herbicida glifosato. Sin embargo, no se han evaluado los genotipos obtenidos mediante marcadores moleculares. En este trabajo se usaron marcadores moleculares RAPD, ISSR y SSR para el análisis de la diversidad genética, la estimación de las relaciones de parentesco y para confirmar la identidad genética de nueve genotipos élite de soya (cinco líneas resistentes a glifosato y sus respectivos parentales). Los marcadores moleculares permitieron distinguir a los distintos cultivares. El dendrograma UPGMA construido a partir de estos agrupó a cada línea singénica con uno de sus parentales. El bajo coeficiente de similitud genética (0.4) de los parentales IncaSoy1, IncaSoy36, CEB2 y CEB4 confirmaron las diferencias genéticas observadas. Se detectaron con precisión los genotipos CEB4 y RP5 con el uso de marcadores SCAR y SSR, respectivamente, a partir de una colección de cultivares durante diferentes pruebas. Los amplicones de RAPD se convirtieron en dos nuevos marcadores SCAR, lo que permitió detectar al genotipo CEB4 y la elaboración de un perfil molecular del cultivar IncaSoy36, cruciales para futuras acciones basadas en el potencial de mejora de ambas líneas. Este sistema de marcadores podría proveer beneficios sustanciales para los mejoradores de soya y su industria semillera, y en proyectos basados en germoplasma y capacidades locales en otros países.
REFERENCIAS (EN ESTE ARTÍCULO)
Delgado C, Enríquez GA, Ortiz R, Céspedes O, Soto N, Hernández Y, et al. Glyphosate resistance trait into soybean Cuban varieties: agronomical assessment of transgenic lines until F6 generation. Int J Agron Agric Res. 2015;7:75-85.
Bisen A, Khare D, Nair P, Tripathi N. SSR analysis of 38 genotypes of soybean (Glycine Max (L.) Merr.) genetic diversity in India. Physiol Mol Biol Plants. 2015;21:109-15.
Chowdhury AK, Srinives P, Tongpamnak P, Saksoong P, Chatwachirawong P. Genetic relationship among exotic soybean introductions in Thailand: Consequence for varietal registration. Sci Asia. 2002;28:227-39.
Brown-Guedira G, Thompson J, Nelson R, Warburton M. Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Sci. 2000;40:815-23.
Li Y, Guan R, Liu Z, Ma Y, Wang L, Li L, et al. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor Appl Genet. 2008;117:857-71.
Tantasawat P, Trongchuen J, Prajongjai T, Jenweerawat S, Chaowiset W. SSR analysis of soybean (Glycine max (L.) Merr.) genetic relationship and variety identification in Thailand. Austr J Crop Sci. 2011;5:283-90.
Khan F, Hakeem KR, Siddiqi TO, Ahmad A. RAPD markers associated with salt tolerance in soybean genotypes under salt stress. Appl Biochem Biotechnol. 2013;170:257-72.
Anwar-Malik MF, Tariq K, Qureshi AS, Khan MR, Ashraf M, Naz G, et al. Analysis of genetic diversity of soybean germplasm from five different origins using RAPD markers. Acta Agric Scand, Section B-Soil Plant Sci. 2017;67:148-54.
Skroch P, Nienhuis J. Impact of scoring error and reproducibility RAPD data on RAPD based estimates of genetic distance. Theor Appl Genet. 1995;91:1086-91.
Paran I, Michelmore R. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet. 1993;85:985-93.
Narvel JM, Fehr WR, Chu WC, Grant D, Shoemaker RC. Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci. 2000;40:1452-8.
Wang L, Guan R, Zhangxiong L, Chang R, Qiu L. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci. 2006;46:1032-8.
Rodrigues DH, de Alcântara Neto F, Schuster I. Identification of essentially derived soybean cultivars using microsatellite markers. Crop Breed Appl Biotechnol. 2008;8:74-8.
Baloch FS, Kurt C, Arioğlu HH, Özkan H. Assaying of diversity among soybean (Glycine max (L.) Merr.) and peanut (Arachis hypogaea L.) genotypes at DNA level. Turkish J Agric Forest. 2010;34:285-301.
Brick A, Sivolap YM. Molecular genetic identification and certification of soybean (Glycine max L.) cultivars. Russ J Genet. 2001;37:1061-7.
Meena RK, Verma AK, Thakur S. Molecular identity using Inter-simple Sequence Repeat & Random Amplified Polymorphic DNA markers in soybean (Glycine max) cultivars. Curr Trends Biotechnol Pharm. 2015;9:16-22.
Doyle J, Doyle J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11-5.
Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26:297-302.
Hammer Ø, Harper DAT, Ryan P. PAST-Palaeontological statistics. 2001 [cited 2018 Oct 17]. Available from: www.uv.es/~pardomv/pe/2001_1/past/ pastprog/past.pdf
Smith JS, Chin EC, Shu H, Smith OS, Wall SJ, Senior ML, et al. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet. 1997;95:163-73.
Ghislain M, Zhang D, Fajardo D, Huamán Z, Hijmans RJ. Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Resour Crop Evol. 1999;46:547-55.
Raina S, Rani V, Kojima T, Ogihara Y, Singh K, Devarumath R. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome. 2001;44:763-72.
Birnboim H, Doyle J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979;7:1513-23.
Jin Y, He T, Lu BR. Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation. New Phytologist. 2003;159:513-9.
Zhao R, Cheng Z, Lu W, Lu B. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Chinese Sci Bull. 2006;51:1219-27.
Panjoo M, Nazarian-Firouzabadi F, Ismaili A, Ahmadi H. Evaluation of genetic diversity among soybean (Glycine max) genotypes, using ISJ and RAPD molecular markers. J Plant Physiol Breed. 2014;4:55-65.
Hamzekhanlu MY, Izadi-Darb A, Pirvali-Beiranv N, Taher-Hallajian M, Majdabadi A. Phenotypic and molecular analysis of M7 generation of soybean mutant lines through random amplified polymorphic DNA (RAPD) marker and some morphological traits. Afr J Agric Res. 2011;6:1779-85.
Mudibu J, Nkongolo K, Mehes-Smith M, Kalonji-Mbuyi A. Genetic analysis of a soybean genetic pool using ISSR marker: effect of gamma radiation on genetic variability. Int J Plant Breed Genet. 2011;5:235-45.
Al-Saghir MG, Abdel-Salam ASG. Genetic diversity of North American soybean (Glycine max L.) cultivars as revealed by RAPD markers. J Plant Sci. 2011;6:36-42.
Kuroda Y, Tomooka N, Kaga A, Wanigadeva S, Vaughan, DA. Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Genet Resour Crop Evol. 2009;56:1045-55.
Priolli RHG, Pinheiro JB, Zucchi MI, Bajay MM, Vello NA. Genetic diversity among Brazilian soybean cultivars based on SSR loci and pedigree data. Braz Arch Biol Technol. 2010;53:519-31.
Olsina C, Cairo C, Pessino S. Desarrollo de una base de datos genéticos para la caracterización del germoplasma argentino de soja. Cienc Agronóm. 2012;12:23-39.
Bizari EH, Unêda-Trevisoli SH, Vianna VF, Meyer AS, Di Mauro AO. Genetic diversity in early-maturing soybean genotypes based on biometric and molecular parameters. J Food Agric Environ. 2014;12:259-65.
Kumar S. Studies on efficiency of RAPD primers in developing molecular profiles for genetic purity studies in soybean (Glycine max L.) cultivars. Genetika. 2014;46:681-92.
Hosamani J, Kumar M, Talukdar A, Lal S, Dadlani M. Molecular characterization and identification of candidate markers for seed longevity in soybean [Glycine max (L.) Merill]. Ind J Genet Plant Breed. 2013;73:64-71.
Liubov C, Ecaterina B, Nicolae B, Galina L. Genetic variation within Glycine max (L.) Merrill genotypes resistant to Fusariose as revealed by microsatellite markers. Romanian Biotechnol Lett. 2012;17:7270-8.
Soto N, Ferreira A, Delgado C, Enríquez GA. In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety. Biotecnol Apl. 2013;30:34-8.
Soto N, Delgado C, Hernández Y, Rosabal Y, Ferreira A, Pujol M, et al. Efficient particle bombardment-mediated transformation of Cuban soybean (INCASoy-36) using glyphosate as a selective agent. Plant Cell Tissue Organ Cult. 2017;128:187-96.