medigraphic.com
ENGLISH

Revista Cubana de Hematología, Inmunología y Hemoterapia

ISSN 1561-2996 (Digital)
ISSN 0864-0289 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

Rev Cubana Hematol Inmunol Hemoter 2021; 37 (1)


Implicaciones clínicas de las quimiocinas y sus receptores en la medicina transfusional y el trasplante

Soler NG
Texto completo Cómo citar este artículo

Idioma: Español
Referencias bibliográficas: 43
Paginas: 1-22
Archivo PDF: 372.99 Kb.


PALABRAS CLAVE

quimiocinas, receptores de quimosinas, trasplante de progenitores hematopoyéticos, enfermedad injerto contra huésped, reacción transfusional.

RESUMEN

Introducción: Las quimiocinas son proteínas secretadas con tamaño en el rango de 8-10 kDa, con numerosas funciones en la fisiología normal y patológica. El término deriva de las palabras citocinas quimiotácticas, que refleja su importante participación en la quimioatracción de leucocitos. Sin embargo, las evidencias muestran que las quimiocinas tienen muchas otras funciones como la comunicación intercelular, la activación celular y la regulación del ciclo celular.
Objetivo: Analizar los conocimientos actuales sobre las quimiocinas y sus receptores, y la significación clínica de estas en la medicina transfusional y el trasplante.
Métodos: Se realizó revisión de la literatura, en inglés y español, a través del sitio web PubMed y el motor de búsqueda Google académico de artículos publicados en los últimos 10 años. Se efectuó análisis y resumen de la bibliografía revisada.
Análisis y síntesis de la información: La transcripción de la mayoría de los genes de quimiocinas es inducible y se produce en respuesta a estímulos celulares específicos. Las quimiocinas son importantes en la movilización de células progenitoras hematopoyéticas para el trasplante y localización de células progenitoras hematopoyéticas trasplantadas. En los modelos de incompatibilidad ABO, las quimiocinas CXC y CC se producen en niveles elevados.
Conclusiones: Muchas son las oportunidades de futuras investigaciones sobre las quimiocinas en la medicina transfusional por la considerable redundancia y superposición en la función biológica de estas moléculas y sus receptores. Son solo una parte de un proceso mucho más grande y complejo dentro de la red de citoquinas y otras moléculas del sistema inmune.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. López-Cotarelo P, Gómez-Moreira C, Criado-García O, Sánchez L, Rodríguez-Fernández JL. Beyond Chemoattraction Multifunctionality of Chemokine Receptors in Leukocytes. Trends Immunol. 2017;38(12):927-41. DOI: http://dx.doi.org/10.1016/j.it.2017.08.004

  2. Legler DF, Thelen M. Chemokines: Chemistry, Biochemistry and Biological Function. Chimia. 2016; 70: 856-9. DOI: https://doi.org/10.2533/chimia.2016.856

  3. Creed TM, T Shweta, Ward RA, McLeish KR. Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils. Inflamm Res. 2017; 66(10): 891-9. DOI: https://doi.org/10.1007/s00011-017-1070-2

  4. Leal Rojas IM, Mok W-H, Pearson FE, Minoda Y, Kenna TJ, Barnard RT, Radford KJ. Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells. 5. Front Immunol. 2017; 8:971. DOI: https://doi.org/10.3389/fimmu.2017.00971

  5. Silvestre-Roig C, Hidalgo A, Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood. 2016; 127:2173-81. DOI: https://doi.org/10.1182/blood-2016-01-688887

  6. Bonavita O, Mollica V, Massara M, Mantovani A, Bonecchi R. Regulation of hematopoiesis by the chemokine system. Cytokine. 2018; 109: 76-80. DOI: https://doi.org/10.1016/j.cyto.2018.01.021

  7. McCully ML, Kouzeli A, Moser B. Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends in Immunology. 2018; 39(9): 734-47. DOI: https://doi.org/10.1016/j.it.2018.06.003

  8. Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol. 2015;93(4):372-83. DOI: https://doi.org/10.1038/icb.2015.15

  9. IUIS/WHO Subcommittee on Chemokine Nomenclature: Chemokine/chemokine receptor nomenclature. Cytokine 2003;21:48-9.

  10. Panda S, Padhiary SK, Routray S. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol. 2016, 60:8-17. DOI: https://10.1016/j.oraloncology.2016.06.008

  11. Chew AL, Tan WY, Khoo BY. Potential combinatorial effects of recombinant atypical chemokine receptors in breast cancer cell invasion: A research perspective. Biomed Rep. 2013;1(2):185-92.

  12. Bonvin P, Gueneau F, Buatois V, Charreton-Galby M, Lasch S, Messmer M, et al. Antibody Neutralization of CXCL10 in Vivo Is Dependent on Binding to Free and Not Endothelial-bound Chemokine: implications for the design of a new generation of anti-chemokine therapeutic antibodies. J Biol Chem. 2017;292(10):4185-97. DOI: https://doi.org/10.1074/jbc.M116.745877

  13. Lo DJ, Kaplan B, Kirk AD. Biomarkers for kidney transplant rejection. Nat Rev Nephrol. 2014;10(4):215-25. DOI: https://doi.org/10.1038/nrneph

  14. Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem. 2017;60(12):4735-79. DOI: https://doi.org/10.1021/acs.jmedchem.6b01309

  15. Gustavsson M, Zheng Y, Handel TM. Production of Chemokine/Chemokine Receptor Complexes for Structural Biophysical Studies. Methods Enzymol. 2016;570:233-60. DOI: https://doi.org/10.1016/bs.mie.2015.10.003

  16. Stone MJ, Hayward JA, Huang Cheng, Huma ZE, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. International Journal Molecular Science. 2017;18(2):342. DOI: https://doi.org/10.3390/ijms18020342

  17. Horuk R. The Duffy Antigen Receptor for Chemokines DARC/ACKR1. Front Immunol. 2015;6:279. DOI: https://doi.org/10.3389/fimmu.2015.00279

  18. Sepuru KM, Rajarathnam K. CXCL1/MGSA Is a Novel Glycosaminoglycan (GAG)-binding Chemokine: structural evidence for two distinct non-overlapping binding domains. J BiolChem. 2016;291(8):4247-55 DOI: https://doi.org/10.1074/jbc.M115.697888

  19. Gao D, Cazares LH, Fish EN. CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer. 2017;17(1):834. DOI: https://doi.org/10.1186/s12885-017-3817-0

  20. McNaughton EF, Eustace AD, King S, Sessions RB, Kay A, Farris M, et al. Novel Anti-Inflammatory Peptides Based on Chemokine-Glycosaminoglycan Interactions Reduce Leukocyte Migration and Disease Severity in a Model of Rheumatoid Arthritis. J Immunol. 2018;200(9):3201-17. DOI: https://doi.org/10.4049/jimmunol.1701187

  21. Thiriot A, Perdomo C, Cheng G, Novitzky-Basso I, McArdle S, Kishimoto JK, et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol. 2017;15(1):45. DOI: https://doi.org/10.1186/s12915-017-0381-7

  22. Ridiandries A, Tan JT, Bursill CA. The Role of CC-Chemokines in the Regulation of Angiogenesis. Int J Mol Sci. 2016;17(11): E1856. DOI: https://doi.org/10.3390/ijms17111856

  23. Pan L, Lv J, Zhang Z, Zhang Y. Adaptation and Constraint in the Atypical Chemokine Receptor Family in Mammals. Biomed Res Int. 2018. DOI: https://doi.org/10.1155/2018/9065181

  24. Salimi P, Esmaeili A, Hashemi M, Behjati M. Endogenous expression of the atypical chemokine receptor CCX-CKR (CCRL1) gene in human embryonic kidney (HEK 293) cells. Mol Cell Biochem. 2016;412(1-2):229-33. DOI: https://doi.org/10.1007/s11010-015-2629-2

  25. Cecyn KZ, Kimura EYS, Lima DMSM, Yamamoto M, Bordin JO, de Oliveira JSR. Expression of adhesion molecules on CD34+ cells from steady-state bone marrow before and after mobilization and their association with the yield of CD34+ cells. Blood Res. 2018;53(1):61-70. DOI: https://doi.org/10.5045/br.2018.53.1.61

  26. Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. Journal Clinical Investigation 2003;111(2):187-96. DOI: https://doi.org/10.1172/JCI15994

  27. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201 (8): 1307-18. DOI: https://doi.org/10.1084/jem.20041385

  28. Teipel R, Oelschlägel U, Wetzko K, Schmiedgen M, Kramer M, Rücker-Braun E, et al. Differences in Cellular Composition of Peripheral Blood Stem Cell Grafts from Healthy Stem Cell Donors Mobilized with Either Granulocyte Colony-Stimulating Factor (G-CSF) Alone or G-CSF and Plerixafor. Biol Blood Marrow Transplant. 2018; 24(11):2171-7. DOI: https://doi.org/10.1016/j.bbmt.2018.06.023

  29. Magenau J, Runaas L, Reddy P. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol. 2016; 173: 190-205. DOI: https://doi.org/10.1111/bjh.13959

  30. Zeiser R, Blazar BR. Acute Graft-versus-Host Disease-Biologic Process, Prevention, and Therapy. 30. N Engl J Med. 2017; 377:2167-79. DOI: https://doi.org/10.1056/NEJMra1609337

  31. Gauthier JM, Li W, Hsi-Min H, Takahashi T, Arefanian S, Krupnick AS, et al. Mechanisms of Graft Rejection and Immune Regulation after Lung Transplant. Annals ATS. 2017; 14(S3):S216-9. DOI: https://doi.org/10.1513/AnnalsATS.201607-576MG

  32. Neujahr DC, Perez SD, Mohammed A, Ulukpo O, Lawrence EC, Fernandez F, et al. Cumulative exposure to gamma interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant. Am J Transplant. 2011;12(2):438-46. DOI: https://doi.org/10.1111/j.1600-6143.2011.03857.x

  33. Madhumita C, Dominik R, Meinrad G. Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochemical Society Transactions. 2015; 43(4):720-6. DOI: https://doi.org/10.1042/BST20150113

  34. Fox JM, Kausar F, Day A, Osborne M, Hussain K, Mueller A, et al. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Sci Rep. 2018;8(1):9466. DOI: https://doi.org/10.1038/s41598-018-27710-9

  35. Brown AJ, Sepuru KM, Sawant KV, Rajarathnam K. Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil-Platelet Crosstalk. Front Immunol. 2017;8:1248. DOI: https://doi.org/10.3389/fimmu.2017.01248

  36. Wang Z, Shang H, Jiang Y. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency. Front Immunol. 2017;8:1274. DOI: https://doi.org/10.3389/fimmu.2017.01274

  37. Hermand P, Liliane C, Cédric P, Catherine V, Christophe C. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1. Sci Rep. 2016;6:33786. DOI: https://doi.org/10.1038/srep33786

  38. Hojo-Souza NS, Pereira DB, de Souza FS, de Oliveira TA, Santos M, Shugiro M, et al. On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malar J. 2017;16(1):42. DOI: https://doi.org/10.1186/s12936-017-1683-5

  39. Lusso P. Chemokines and HIV: The First Close Encounter. Front Immunol. 2015;6:294. DOI: https://doi.org/10.3389/fimmu.2015.00294

  40. Dupont L, Reeves MB. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol. 2015;26(2):75-89. DOI: https://doi.org/10.1002/rmv.1862

  41. Chang CC, Lee TC, Su MJ, Hsiu-Chen L, Fang-Yi C, Yi-Ting C, et al. Transfusion-associated adverse reactions (TAARs) and cytokine accumulations in the stored blood components: the impact of prestorage versus poststorage leukoreduction. Oncotarget. 2017;9(4):4385-94. DOI: https://doi.org/10.18632/oncotarget.23136

  42. Sut C, Tariket S, Chou ML, Garraud O, Laradi S, Hamzeh-Cognasse H, et al. Duration of red blood cell storage and inflammatory marker generation. BloodTransfus. 2017;15(2):145-52. DOI: https://doi.org/10.2450/2017.0343-16

  43. Garraud O, Tariket S, Sut C, Haddad A, Aloui C, Chakroun T, et al. Transfusion as an Inflammation Hit: Knowns and Unknowns. Front Immunol. 2016;7:534. 534. DOI: https://doi.org/10.3389/fimmu.2016.00534




2020     |     www.medigraphic.com

Mi perfil

CÓMO CITAR (Vancouver)

Rev Cubana Hematol Inmunol Hemoter . 2021;37