medigraphic.com
ENGLISH

Revista Cubana de Investigaciones Biomédicas

ISSN 1561-3011 (Digital)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

Rev Cubana Invest Bioméd 2021; 40 (1)


Infección por COVID-19 y accidente cerebrovascular

González-García S, Garófalo-Gomez N, González-Quevedo A, Mezquia PN
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 50
Paginas: 1-13
Archivo PDF: 467.46 Kb.


PALABRAS CLAVE

coronavirus, ictus, SARS-CoV-2, enfermedad cerebrovascular, síntomas neurológicos.

RESUMEN

La actual pandemia de COVID-19 causada por el virus SARS-CoV-2, se caracteriza por una alta morbilidad y mortalidad. Algunos estudios han reportado que la frecuencia de ictus en pacientes infectados con el virus oscila entre un 5-20 %. A pesar de estas cifras alarmantes, las vías por las cuales el virus llega al sistema nervioso central y los mecanismos fisiopatológicos por los que puede ocurrir un ictus en estos pacientes no han sido totalmente esclarecidos. Numerosos estudios han demostrado que la infección por SARS-CoV-2 está asociada a un estado protrombótico, capaz de causar un tromboembolismo arterial y venoso. Además, se ha reportado una respuesta inflamatoria exacerbada, con reclutamiento de células sanguíneas y una secreción desproporcionada de citoquinas proinflamatorias. También la hipoxia y fenómenos cardioembólicos han sido propuestos como posibles mecanismos. Es esencial definir con exactitud los mecanismos fisiopatológicos que vincula la infección por SARS-CoV-2 con la ocurrencia del ictus, con la finalidad de aplicar tratamientos más específicos y evitar futuras complicaciones.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Masters PS, Perlamn S. Coronaviridae. In: Knipe DM, Howley P (eds) Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins; 2013. pp. 825-58.

  2. Heugel J, Martin E, Kuypers J, Englund J. Coronavirus-associated pneumonia in previously healthy children. Pediatr Infect Dis J. 2007;26(8):753-5. DOI: 10.1097/INF.0b013e318054e31b

  3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. DOI: 10.1016/S0140-6736(20)30183-5

  4. Khan S, Ali A, Siddique R, Nabi G. Novel coronavirus is putting the whole world on alert. J Hosp Infect. 2020; 104 (4): 451. DOI: 10.1016/j.jhin.2020.01.019

  5. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurological manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683-690. DOI: 10.1001/jamaneurol.2020.1127

  6. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020; 5(3):279-284. DOI: 10.1136/svn-2020-000431

  7. Ezpeleta D, García Azorín D. Manual COVID-19 para el neurólogo general. Ciudad: Madrid. Ed: David Ezpeleta y David García Azorín. Sociedad Española de Neurología. Editorial: Ediciones SEN; 2020. ISBN: 978-84-946708-3-1.

  8. Brask J, Chauhan A, Hill RH, Ljunggren HG, Kristensson K. Effects on synaptic activity in cultured hippocampal neurons by influenza A viral proteins. J Neurovirol. 2005;11:395-402. DOI: 10.1080/13550280500186916

  9. Xu J, Ikezu T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer's disease: A foreseeable medical challenge in post-HAART era. J Neuroimmune Pharmacol. 2009;4:200-12. DOI: 10.1007/s11481-008-9136-0

  10. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74:8913-21. DOI: 10.1128/jvi.74.19.8913-8921.2000

  11. Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J, et al. Antibody Detection and Dynamic Characteristics in Patients With COVID-19. Clin Infect Dis. 2020; 71(8):1930-1934. DOI: 10.1093/cid/ciaa461

  12. Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia. Int J Infect Dis. 2014;29:301-6. DOI: 10.1016/j.ijid.2014.09.003

  13. Algahtani H, Subahi A, Shirah B. Neurological Complications of Middle East Respiratory Syndrome Coronavirus: A Report of Two Cases and Review of the Literature. Case Rep Neurol Med. 2016; 2016: 3502683. DOI: 10.1155/2016/3502683

  14. Stainsby B, Howitt S, Porr J. Neuromusculoskeletal disorders following SARS: A case series. J Can Chiropr Assoc. 2011;55:32-9. PMCID: PMC3044805

  15. Yan-Chao Li, Wan-Zhu Bai, Tsutomu Hashikawa. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6): 552-555. DOI: 10.1002/jmv.25728

  16. Baig AM, Khan NA. Novel chemotherapeutic strategies in the management of primary amoebic meningoencephalitis due to Naegleria fowleri. CNS Neurosci Ther. 2014;20(3): 289-90. DOI: 10.1111/cns.12225

  17. Joob B, Wiwanitkit V. Neurologic syndrome due to MERS: Is there a possibility that the virus can cross the blood-brain barrier to cause a neurological problem? Ann Trop Med Public Health. 2015; 8:231.

  18. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-47. DOI: 10.2353/ajpath.2007.061088

  19. Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res 2012;16:628-35. DOI: 10.1016/j.virusres.2011.12.021

  20. Li YC, Bai WZ, Hirano N, Hayashida T, Taniguchi T, Sugita Y, Tohyama K, Hashikawa T. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol. 2013;521:203-12. DOI: 10.1002/cne.23171

  21. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020;67(6485):1444-8. DOI: 10.1126/science.abb2762

  22. Kabbani N, Olds JL. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Molecular Pharmacology. 2020;97(5):351-3. DOI: 10.1124/molpharm.120.000014

  23. Hofmann H, Geier M, Marzi A, Krumbiegel M, Peipp M, Fey GH, et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319:1216-21. DOI: 10.1016/j.bbrc.2004.05.114

  24. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 2004;173:4030-9.

  25. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. J Infect Dis. 2016; 213: 712-22. DOI: 10.1093/infdis/jiv499

  26. Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3-8. DOI: 10.1016/j.virol.2017.12.015

  27. Warren-Gash C, Blackburn R, Whitaker H, McMenamin J, Hayward A. Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland. Eur Respir J. 2018; 51(3): 1701794. DOI: 10.1183/13993003.01794-2017

  28. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-34. DOI: 10.1016/S0140-6736(20)30628-0

  29. Akhmerov A, Marban E. COVID-19 and the Heart. Circ Res. 2020;126(10):1443-55.

  30. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39:529-39. DOI: 10.1007/s00281-017-0629-x

  31. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5):846-848. DOI: 10.1007/s00134-020-05991-x

  32. Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, et al. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106(7): 2366-74. DOI: 10.1182/blood-2004-10-4166

  33. Yen YT, Liao F, Hsiao CH, Kao CL, Chen EC, Wu-Hsieh BA. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol. 2006; 80(6):2684-93. DOI: 10.1128/JVI.80.6.2684-2693.2006

  34. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71(15): 762-768. DOI: 10.1093/cid/ciaa248

  35. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. DOI: 10.1001/jama.2020.1585

  36. Chien JY, Hsueh PR, Cheng WC, Yu CJ, Yang PC. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11(6):715-22. DOI: 10.1111/j.1440-1843.2006.00942.x

  37. Wong CK, Lam CW, Wu AK, IP WK, Lee NL, Chan IH, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95-103. DOI: 10.1111/j.1365-2249.2004.02415.x

  38. Kim ES, Choe PG, Park WB, Oh HS, Kim EJ, Nam EY, et al. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci. 2016;31(11):1717-25. DOI: 10.3346/jkms.2016.31.11.1717

  39. Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio. 2015;6(3):e00638-15.

  40. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz D, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016; 19(2): 181-93. DOI: 10.1016/j.chom.2016.01.007

  41. Libby P, Simon DI. Inflammation and thrombosis: The clot thickens. Circulation. 2001;103:1718-20. DOI: 10.1161/01.cir.103.13.1718

  42. Boekholdt SM, Kramer MH. Arterial thrombosis and the role of thrombophilia. Semin Thromb Hemost. 2007;33(6):588-96.

  43. Narita M. Pathogenesis of neurologic manifestations of Mycoplasma pneumoniae infection. Pediatr Neurol. 2009;41:159-66. DOI: 10.1016/j.pediatrneurol.2009.04.012

  44. van der Poll T, Levi M. Crosstalk Between Inflammation and Coagulation: The Lessons of Sepsis. Curr Vasc Pharmacol. 2012;10(5):632-8. DOI: 10.2174/157016112801784549

  45. Iba T, Thachil J, Maruyama I, Jilma B, Brenner T, Müller M, et al. Potential Diagnostic Markers for Disseminated Intravascular Coagulation of Sepsis. Blood Rev. 2016;30(2):149-55. DOI: 10.1016/j.blre.2015.10.002

  46. Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020; 91(8):889-891. DOI: 10.1136/jnnp-2020-323586

  47. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395:507-13. DOI: 10.1016/S0140-6736(20)30211-7

  48. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020; 382(17): e38. DOI: 10.1056/NEJMc2007575

  49. Gardiner C, Hills J, Machin SJ, Cohen H. Diagnosis of antiphospholipid syndrome in routine clinical practice. Lupus. 2013;22:18-25.

  50. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18: 844-47. DOI: 10.1111/jth.14768




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Invest Bioméd. 2021;40

ARTíCULOS SIMILARES

CARGANDO ...