medigraphic.com
ENGLISH

Revista Cubana de Hematología, Inmunología y Hemoterapia

ISSN 1561-2996 (Digital)
ISSN 0864-0289 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 2

Siguiente >>

Rev Cubana Hematol Inmunol Hemoter 2021; 37 (2)


Banda 3: protagonismo en la oclusión microvascular de la drepanocitosis

Villaescusa BR
Texto completo Cómo citar este artículo

Idioma: Español
Referencias bibliográficas: 15
Paginas: 1-3
Archivo PDF: 190.42 Kb.


PALABRAS CLAVE

Sin palabras Clave

FRAGMENTO

La banda 3 es una proteína multifuncional y la principal proteína que integra el citoesqueleto en el eritrocito. Es fundamental en la flexibilidad y la forma de los eritrocitos, así como en la regulación de varias funciones celulares.
La banda 3 contiene cuatro residuos de fosfo-tirosina regulados por la actividad de la tirosin fosfatasa y tirosin kinasa, que la mantienen en un estado basal fisiológico de desfosforilación. Determinados estímulos pueden producir la fosforilación de los residuos de tirosina al inhibir la acción de las enzimas reguladoras lo que trae como consecuencia la modulación de diversas funciones como la glucólisis, los movimientos del citoesqueleto, el transporte de aniones y se asocia con trastornos de los eritrocitos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Bruce LJ, Beckmann R, Ribeiro ML, Peters LL, Chasis JA, Delaunay J. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood. 2003 May 15;101(10):4180-8. DOI: https://10.1182/blood-2002-09-2824

  2. Bruce LJ, Gyorffy G. Red cell membrane proteins. HemaSphere. 2019; 3(3):154-6. DOI: https://10.1097/HS9.000000189

  3. Satchwell TJ, Hawley BR, Bell AJ, Ribeiro ML, Toye AM. The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis. Haematologica. 2015 Jan;100(1):133-42. DOI: https://10.3324/haematol.2014.114538

  4. Lepke S, Heberle J, Passow H. The Band 3 Protein: Anion Exchanger and Anion-Proton Cotransporter. In: Bernhardt I, Ellory JC (eds). Red Cell Membrane Transport in Health and Disease. Berlin: Springer; 2003. p.221-52. DOI: https://doi.org/10.1007/978-3-662-05181-8_10

  5. Reithmeier RA, Casey JR, Kalli AC. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta.2016; 1858: 1507-32. DOI: https://10.1016/j.bbamem.2016.03.030

  6. Ferru E, Giger K, Pantaleo A, Campanella E, Grey J, Ritchie K, et al. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood. 2011; 117:5998–6006. DOI: https://10.1182/blood-2010-11-317024

  7. Pantaleo A, Ferru E, Pau MC, Khadjavi A, Mandili G, Mattè A, Spano A, De Franceschi L, Pippia P, Turrini F. Band 3 Erythrocyte Membrane Protein Acts as Redox Stress Sensor Leading to Its Phosphorylation by p (72) Syk. Oxid Med Cell Longev. 2016; 2016:6051093. DOI: https://10.1155/2016/6051093

  8. Connes P, Alexy T, Detterich J, Romana M, Hardy-Dessources MD, Ballas SK. The role of blood rheology in sickle cell disease. Blood Rev. 2016;30:111–8. DOI: https://10.1016/j.blre.2015.08.005

  9. Hierso R, Lemonne N, Villaescusa R, Lalanne-Mistrih M-L, Charlot K, Etienne-Julan M, et al. Exacerbation of oxidative stress during sickle vasoocclusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study. Br J Haematol. 2017;176:805–13 DOI: https://10.1111/bjh.1447

  10. Nolfi-Donegan D, Pradhan-Sundd T, Pritchard KA, Hillery CA. Redox signaling in sickle cell disease. Current Opin Physiol. 2019; 9:26–33. DOI: https://10.1016/j.cophys.2019.04.022

  11. Puchulu-Campanella E, Turrini FM, Li Y-H, Low PS. Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3. Proc Nat Acad Sci. 2016;113(48):13732–7. DOI: https://10.1073/pnas.1611904113

  12. van Beers EJ, Schaap MCL, Berckmans RJ, Nieuwland R, Sturk A, van Doormaal FF, et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica. 2009; 94:1513–9. DOI: https://10.3324/haematol.2009.008938

  13. Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood.2015;125:3805–14. DOI: https://10.1182/blood-2014-07-589283

  14. Kucukal E, Ilich A, Key NS, Little JA, Gurkan UA. Red blood cell adhesion to heme-activated endothelial cells reflects clinical phenotype in sickle cell disease. Am J Hematol. 2018;93:1050–60. DOI: https://10.1002/ajh.25159

  15. Hebbel RP, Key NS. Microparticles in sickle cell anaemia: promise and pitfalls. Br J Haematol. 2016;174(1):16–29. DOI: https://10.1111/bjh.14112




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Hematol Inmunol Hemoter . 2021;37

ARTíCULOS SIMILARES

CARGANDO ...