medigraphic.com
ENGLISH

Salud Mental

ISSN 0185-3325 (Impreso)
Órgano Oficial del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 5

<< Anterior

Salud Mental 2022; 45 (5)


Prodromes and biological markers in schizophrenia: Importance for the dopamine, glutamate, and neurodevelopmental hypothesis

Díaz-Sánchez JP, Solís-Chagoyán H, Benítez-King GA
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 99
Paginas: 261-272
Archivo PDF: 447.80 Kb.


PALABRAS CLAVE

Esquizofrenia, etiología, factores de riesgo, biomarcadores, sinapsis, dopamina, NMDAR.

RESUMEN

Antecedentes. La esquizofrenia es una enfermedad mental multifactorial. Una comprensión básica de sus componentes etiológicos mejora su entendimiento, su diagnóstico y la selección de posibles blancos terapéuticos. Objetivo. Reportar los pródromos e indicadores biológicos en pacientes esquizofrénicos o de ultra- alto riesgo (UHR) y dilucidar su especificidad. Método. Revisión narrativa de fuentes relevantes en inglés y español en la base de datos Medline-PubMed sobre las anomalías física menores, anomalías cognitivas, cambios neuroanatómicos, sinápticos y celulares presentes en pacientes esquizofrénicos y/o en sujetos de UHR. Resultados. Los pacientes con EZ y, de manera menos predominante, los sujetos de UHR presentan manifestaciones fenotípicas y conductuales que se correlacionan con los procesos celulares subyacentes. El estudio de éstos permite caracterizar diferentes biomarcadores diagnósticos. En la actualidad, su aplicación en la clínica es limitada por distintos factores como son la fisiopatología poco comprendida, la falta de modelos de estudio, la homología con otros trastornos psiquiátricos y los escasos ensayos clínicos realizados. Discusión y conclusión. La esquizofrenia es la manifestación final de daños en el neurodesarrollo prenatal y post-natal, y se refleja durante la etapa prodrómica en indicadores biológicos tempranos con relevancia clínica. Se requiere establecer nuevos modelos de estudio que permitan ampliar el conocimiento para ofrecer biomarcadores específicos para ser usados en el diagnóstico clínico temprano.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Ambrosio-Gallardo, F., Cruz-Fuentes, C., Heinze-Martin, G., Caraveo-Anduaga, J.,& Cortés-Sotres, J. (2015). Study of minor physical abnormalities in completenuclear Mexican families. Evidence of neurodevelopmental problems inschizophrenia. PloS One, 10(1), e0117080. doi: 10.1371/journal.pone.0117080

  2. Artigue, J., & Tizón, J. L. (2014). Una revisión sobre los factores de riesgo en lainfancia para la esquizofrenia y los trastornos mentales graves del adulto[Review of risks factors in childhood for schizophrenia and severe mentaldisorders in adulthood]. Atencion Primaria, 46(7), 336-356. doi: 10.1016/j.aprim.2013.11.002

  3. Barch, D. M. (2009). Neuropsychological abnormalities in schizophrenia and majormood disorders: similarities and differences. Current Psychiatry Reports, 11(4),313-319. doi: 10.1007/s11920-009-0045-6

  4. Barrón, H., Hafizi, S., Andreazza, A. C., & Mizrahi, R. (2017). Neuroinflammationand Oxidative Stress in Psychosis and Psychosis Risk. International Journal ofMolecular Sciences, 18(3), 651. doi: 10.3390/ijms18030651

  5. Bast, T., Pezze, M., & McGarrity, S. (2017). Cognitive deficits caused by prefrontalcortical and hippocampal neural disinhibition. British Journal of Pharmacology,174(19), 3211-3225. doi: 10.1111/bph.13850

  6. Benítez-King, G. (2006). Melatonin as a cytoskeletal modulator: implicationsfor cell physiology and disease. Journal of Pineal Research, 40(1), 1-9. doi:10.1111/j.1600-079X.2005.00282.x

  7. Benítez-King, G., Ramírez-Rodríguez, G., Ortíz, L., & Meza, I. (2004). The neuronalcytoskeleton as a potential therapeutical target in neurodegenerative diseasesand schizophrenia. Current Drug Targets. CNS and Neurological Disorders,3(6), 515-533. doi: 10.2174/1568007043336761

  8. Bitanihirwe, B. K., & Woo, T. U. (2014). Perineuronal nets and schizophrenia: theimportance of neuronal coatings. Neuroscience and Biobehavioral Reviews, 45,85-99. doi: 10.1016/j.neubiorev.2014.03.018

  9. Brent, B. K., Thermenos, H. W., Keshavan, M. S., & Seidman, L. J. (2013). Gray matteralterations in schizophrenia high-risk youth and early-onset schizophrenia: areview of structural MRI findings. Child and Adolescent Psychiatric Clinics ofNorth America, 22(4), 689-714. doi: 10.1016/j.chc.2013.06.003

  10. Cardozo, P. L., de Lima, I. B. Q., Maciel, E. M. A., Silva, N. C., Dobransky, T., &Ribeiro, F. M. (2019). Synaptic Elimination in Neurological Disorders. CurrentNeuropharmacology, 17(11), 1071-1095. doi: 10.2174/1570159X17666190603170511

  11. Carmeli, C., Knyazeva, M. G., Cuénod, M., & Do, K. Q. (2012). Glutathioneprecursor N-acetyl-cysteine modulates EEG synchronization in schizophreniapatients: a double-blind, randomized, placebo-controlled trial. PloS One, 7(2),e29341. doi: 10.1371/journal.pone.0029341

  12. Chan, R. C. K., Di, X., McAlonan, G. M., & Gong, Q. Y. (2011). Brain anatomicalabnormalities in high-risk individuals, first-episode, and chronic schizophrenia:an activation likelihood estimation meta-analysis of illness progression.Schizophrenia Bulletin, 37(1), 177-188. doi: 10.1093/schbul/sbp073

  13. Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S., Stockings, E., Scott,J. G., … Whiteford, H. A. (2018). Global Epidemiology and Burden ofSchizophrenia: Findings From the Global Burden of Disease Study 2016.Schizophrenia Bulletin, 44(6), 1195-1203. doi: 10.1093/schbul/sby058

  14. Chong, H. Y., Teoh, S. L., Wu, D. B. C., Kotirum, S., Chiou, C. F., & Chaiyakunapruk,N. (2016). Global economic burden of schizophrenia: a systematic review.Neuropsychiatric Disease and Treatment, 12, 357-373. doi: 10.2147/NDT.S96649

  15. Compton, M. T., & Walker, E. F. (2009). Physical manifestations of neurodevelopmentaldisruption: are minor physical abnormalities part of the syndrome of schizophrenia?.Schizophrenia Bulletin, 35(2), 425-436. doi: 10.1093/schbul/sbn151

  16. Coyle, J. T., Basu, A., Benneyworth, M., Balu, D., & Konopaske, G. (2012).Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications.Handbook of Experimental Pharmacology, (213), 267-295. doi: 10.1007/978-3-642-25758-2_10

  17. Dahoun, T., Trossbach, S. V., Brandon, N. J., Korth, C., & Howes, O. D. (2017). Theimpact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system:a systematic review. Translational Psychiatry, 7(1), e1015. doi: 10.1038/tp.2016.282

  18. Do, K. Q., Cuenod, M., & Hensch, T. K. (2015). Targeting Oxidative Stress and AberrantCritical Period Plasticity in the Developmental Trajectory to Schizophrenia.Schizophrenia Bulletin, 41(4), 835-846. doi: 10.1093/schbul/sbv065

  19. Dondé, C., D’Amato, T., & Rey, R. (2018). Dermatoglyphics patterns abnormalitiesas putative markers of psychometric-risk for schizophrenia. PsychiatriaDanubina, 30(1), 109-111.

  20. Donegan, J. J., & Lodge, D. J. (2017). Cell-based therapies for the treatmentof schizophrenia. Brain Research, 1655, 262-269. doi: 10.1016/j.brainres.2016.08.010

  21. Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functionalabnormalities in mood disorders: implications for neurocircuitry models ofdepression. Brain Structure & Function, 213(1-2), 93-118. doi: 10.1007/s00429-008-0189-x

  22. Driver, D. I., Gogtay, N., & Rapoport, J. L. (2013). Childhood onset schizophrenia andearly onset schizophrenia spectrum disorders. Child and Adolescent PsychiatricClinics of North America, 22(4), 539-555. doi: 10.1016/j.chc.2013.04.001

  23. Egbujo, C. N., Sinclair, D., & Hahn, C. G. (2016). Dysregulations of Synaptic VesicleTrafficking in Schizophrenia. Current Psychiatry Reports, 18(8), 77. doi:10.1007/s11920-016-0710-5

  24. Filice, F., Janickova, L., Henzi, T., Bilella, A., & Schwaller, B. (2020). TheParvalbumin Hypothesis of Autism Spectrum Disorder. Frontiers in CellularNeuroscience, 14, 577525. doi: 10.3389/fncel.2020.577525

  25. Franco, J. G., Valero, J., & Labad, A. (2010). Minor physical abnormalities andschizophrenia: literature review. Actas Españolas de Psiquiatria, 38(6), 365-371. Retrieved from: https://www.academia.edu/2642902/Minor_physical_anomalies_and_schizophrenia_literature_review

  26. Forni, P. E., & Wray, S. (2012). Neural crest and olfactory system: new prospective.Molecular Neurobiology, 46(2), 349-360. doi: 10.1007/s12035-012-8286-526. Fornito, A., Yücel, M., Dean, B., Wood, S. J., & Pantelis, C. (2009). Anatomicalabnormalities of the anterior cingulate cortex in schizophrenia: bridging the gapbetween neuroimaging and neuropathology. Schizophrenia Bulletin, 35(5), 973-993. doi: 10.1093/schbul/sbn025

  27. Fu, C. H. Y., & Costafreda, S. G. (2013). Neuroimaging-based biomarkers in psychiatry:clinical opportunities of a paradigm shift. Canadian Journal of Psychiatry. RevueCanadienne de Psychiatrie, 58(9), 499-508. doi: 10.1177/070674371305800904

  28. Fujiwara, H., Yassin, W., & Murai, T. (2015). Neuroimaging studies of socialcognition in schizophrenia. Psychiatry and Clinical Neurosciences, 69(5), 259-267. doi: 10.1111/pcn.12258

  29. Gao, X., Zhang, W., Yao, L., Xiao, Y., Liu, L., Liu, J., … Lui, S. (2018). Associationbetween structural and functional brain alterations in drug-free patientswith schizophrenia: a multimodal meta-analysis. Journal of Psychiatry &Neuroscience: JPN, 43(2), 131-142. doi: 10.1503/jpn.160219

  30. Golembo-Smith, S., Walder, D. J., Daly, M. P., Mittal, V. A., Kline, E., Reeves, G.,& Schiffman, J. (2012). The presentation of dermatoglyphic abnormalities inschizophrenia: a meta-analytic review. Schizophrenia Research, 142(1-3), 1-11.doi: 10.1016/j.schres.2012.10.002

  31. Gonzalez-Burgos, G., & Lewis, D. A. (2012). NMDA receptor hypofunction,parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia.Schizophrenia Bulletin, 38(5), 950-957. doi: 10.1093/schbul/sbs010

  32. Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanismsof network oscillations: implications for understanding cortical dysfunction inschizophrenia. Schizophrenia Bulletin, 34(5), 944-961. doi: 10.1093/schbul/sbn070

  33. Grace, A. A. (2016). Dysregulation of the dopamine system in the pathophysiology ofschizophrenia and depression. Nature Reviews. Neuroscience, 17(8), 524-532.doi: 10.1038/nrn.2016.57

  34. Grace, A. A. (2017). Dopamine System Dysregulation and the Pathophysiologyof Schizophrenia: Insights from the Methylazoxymethanol Acetate Model.Biological Psychiatry, 81(1), 5-8. doi: 10.1016/j.biopsych.2015.11.007

  35. Granger, B. (1996). Synaptogénèse et élagage synaptique: rôle dans le déclenchementdes schizophrénies [Synaptogenesis and synaptic pruning: role in triggeringschizophrenia]. Presse Medicale (Paris, France: 1983), 25(33), 1595-1598.

  36. Godsil, B. P., Kiss, J. P., Spedding, M., & Jay, T. M. (2013). The hippocampalprefrontalpathway: the weak link in psychiatric disorders? EuropeanNeuropsychopharmacology: The Journal of the European Collegeof Neuropsychopharmacology, 23(10), 1165-1181. doi: 10.1016/j.euroneuro.2012.10.018

  37. Guilarte, T. R., Opler, M., & Pletnikov, M. (2012). Is lead exposure in early lifean environmental risk factor for Schizophrenia? Neurobiological connectionsand testable hypotheses. Neurotoxicology, 33(3), 560-574. doi: 10.1016/j.neuro.2011.11.008

  38. Hardingham, G. E., & Do, K. Q. (2016). Linking early-life NMDAR hypofunction andoxidative stress in schizophrenia pathogenesis. Nature Reviews. Neuroscience,17(2), 125-134. doi: 10.1038/nrn.2015.19

  39. Hasam-Henderson, L. A., Gotti, G. C., Mishto, M., Klisch, C., Gerevich, Z., Geiger,J. R. P., & Kovács, R. (2018). NMDA-receptor inhibition and oxidative stressduring hippocampal maturation differentially alter parvalbumin expression andgamma-band activity. Scientific Reports, 8(1), 9545. doi: 10.1038/s41598-018-27830-2

  40. Haukvik, U. K., Hartberg, C. B., & Agartz, I. (2013). Schizophrenia--what doesstructural MRI show? Tidsskrift for den Norske Laegeforening: Tidsskrift forPraktisk Medicin, ny Raekke, 133(8), 850-853. doi: 10.4045/tidsskr.12.1084

  41. Hennessy, R. J., McLearie, S., Kinsella, A., & Waddington, J. L. (2005). Facial surfaceanalysis by 3D laser scanning and geometric morphometrics in relation to sexualdimorphism in cerebral--craniofacial morphogenesis and cognitive function.Journal of Anatomy, 207(3), 283-295. doi: 10.1111/j.1469-7580.2005.00444

  42. Hodgins, S., & Klein, S. (2017). New Clinically Relevant Findings about Violence byPeople with Schizophrenia. Canadian journal of psychiatry. Revue Canadiennede Psychiatrie, 62(2), 86-93. doi: 10.1177/0706743716648300

  43. Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integratedsociodevelopmental-cognitive model. Lancet (London, England), 383(9929),1677-1687. doi: 10.1016/S0140-6736(13)62036-X

  44. Howes, O. D., McCutcheon, R., Owen, M. J., & Murray, R. M. (2017). The Role ofGenes, Stress, and Dopamine in the Development of Schizophrenia. BiologicalPsychiatry, 81(1), 9-20. doi: 10.1016/j.biopsych.2016.07.014

  45. Institute for Health Metrics and Evaluation, Human Development Network, The WorldBank. (2013). The Global Burden of Disease: Generating Evidence, GuidingPolicy – Latin America and Caribbean Regional Edition. Seattle, WA: IHME.

  46. Jackowski, A. P., Araújo Filho, G. M., Almeida, A. G., Araújo, C. M., Reis, M., Nery,F., … Lacerda, A. L. T. (2012). The involvement of the orbitofrontal cortex inpsychiatric disorders: an update of neuroimaging findings. Revista Brasileirade Psiquiatria (Sao Paulo, Brazil: 1999), 34(2), 207-212. doi: 10.1590/s1516-44462012000200014

  47. Jarcho, J. M., Mayer, E. A., Jiang, Z. K., Feier, N. A., & London, E. D. (2012). Pain,affective symptoms, and cognitive deficits in patients with cerebral dopaminedysfunction. Pain, 153(4), 744-754. doi: 10.1016/j.pain.2012.01.002

  48. Jiang, Z., Cowell, R. M., & Nakazawa, K. (2013). Convergence of genetic andenvironmental factors on parvalbumin-positive interneurons in schizophrenia.Frontiers in Behavioral Neuroscience, 7, 116. doi: 10.3389/fnbeh.2013.00116

  49. Keshavan, M., Lizano, P., & Prasad, K. (2020). The synaptic pruning hypothesis ofschizophrenia: promises and challenges. World Psychiatry: Official Journalof the World Psychiatric Association (WPA), 19(1), 110-111. doi: 10.1002/wps.20725

  50. Kim, S. G., Song, J. Y., Joo, E. J., Jeong, S. H., Kim, S. H., Lee, K. Y., …Roh, M. S. (2011). No association of functional polymorphisms inmethlylenetetrahydrofolate reductase and the risk and minor physicalabnormalities of schizophrenia in Korean population. Journal of KoreanMedical Science, 26(10), 1356-1363. doi: 10.3346/jkms.2011.26.10.1356

  51. King, S., Laplante, D., & Joober, R. (2005). Understanding putative risk factors forschizophrenia: retrospective and prospective studies. Journal of Psychiatry &Neuroscience: JPN, 30(5), 342-348.

  52. Kuswanto, C. N., Teh, I., Lee, T. S., & Sim, K. (2012). Diffusion tensor imagingfindings of white matter changes in first episode schizophrenia: a systematicreview. Clinical Psychopharmacology and Neuroscience: The Official ScientificJournal of the Korean College of Neuropsychopharmacology, 10(1), 13-24. doi:10.9758/cpn.2012.10.1.13

  53. Lakhan, S. E., Caro, M., & Hadzimichalis, N. (2013). NMDA Receptor Activityin Neuropsychiatric Disorders. Frontiers in Psychiatry, 4, 52. doi: 10.3389/fpsyt.2013.00052

  54. Laurens, K. R., & Cullen, A. E. (2016). Toward earlier identification and preventativeintervention in schizophrenia: evidence from the London Child Health andDevelopment Study. Social Psychiatry and Psychiatric Epidemiology, 51(4),475-491. doi: 10.1007/s00127-015-1151-x

  55. Laurens, K. R., Luo, L., Matheson, S. L., Carr, V. J., Raudino, A., Harris, F., &Green, M. J. (2015). Common or distinct pathways to psychosis? A systematicreview of evidence from prospective studies for developmental risk factors andantecedents of the schizophrenia spectrum disorders and affective psychoses.BMC Psychiatry, 15, 205. doi: 10.1186/s12888-015-0562-2

  56. Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011).Cognitive control deficits in schizophrenia: mechanisms and meaning.Neuropsychopharmacology: Official Publication of the American College ofNeuropsychopharmacology, 36(1), 316-338. doi: 10.1038/npp.2010.156

  57. Levine, S. Z., & Rabinowitz, J. (2010). Trajectories and antecedents of treatmentresponse over time in early-episode psychosis. Schizophrenia Bulletin, 36(3),624-632. doi: 10.1093/schbul/sbn120

  58. Lieberman, J. A., Girgis, R. R., Brucato, G., Moore, H., Provenzano, F., Kegeles,L., … Small, S. A. (2018). Hippocampal dysfunction in the pathophysiologyof schizophrenia: a selective review and hypothesis for early detectionand intervention. Molecular Psychiatry, 23(8), 1764-1772. doi: 10.1038/mp.2017.249

  59. Lim, D. A., & Alvarez-Buylla, A. (2016). The Adult Ventricular-SubventricularZone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring HarborPerspectives in Biology, 8(5), a018820. doi: 10.1101/cshperspect.a018820

  60. Liu, C. H., Keshavan, M., Tronick, E., & Seidman, L. (2015). Perinatal Risks andChildhood Premorbid Indicators of Later Psychosis: Next Steps for EarlyPsychosocial Interventions. Schizophrenia Bulletin, 41(4), 801-816. doi:10.1093/schbul/sbv047

  61. Lobato, M. I., Belmonte-de-Abreu, P., Knijnik, D., Teruchkin, B., Ghisolfi, E., &Henriques, A. (2001). Neurodevelopmental risk factors in schizophrenia.Brazilian Journal of Medical and Biological Research, 34(2), 155-163. doi:10.1590/s0100-879x2001000200002

  62. Marchisella, F., Coffey, E. T., & Hollos, P. (2016). Microtubule and microtubuleassociated protein abnormalities in psychiatric disease. Cytoskeleton (Hoboken,N.J.), 73(10), 596-611. doi: 10.1002/cm.21300

  63. McGrath, J. J., Féron, F. P., Burne, T. H., Mackay-Sim, A., & Eyles, D.W. (2003). The neurodevelopmental hypothesis of schizophrenia: areview of recent developments. Annals of Medicine, 35(2), 86-93. doi:10.1080/07853890310010005

  64. Miguel-Hidalgo, J. J. (2013). Brain structural and functional changes in adolescentswith psychiatric disorders. International Journal of Adolescent Medicine andHealth, 25(3), 245-256. doi: 10.1515/ijamh-2013-0058

  65. Miyoshi, K., Honda, A., Baba, K., Taniguchi, M., Oono, K., Fujita, T., … Tohyama,M. (2003). Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia,participates in neurite outgrowth. Molecular Psychiatry, 8(7), 685-694. doi:10.1038/sj.mp.4001352

  66. Modinos, G., Costafreda, S. G., van Tol, M. J., McGuire, P. K., Aleman, A., & Allen,P. (2013). Neuroanatomy of auditory verbal hallucinations in schizophrenia:a quantitative meta-analysis of voxel-based morphometry studies. Cortex: aJournal Devoted to the Study of the Nervous System and Behavior, 49(4), 1046-1055. doi: 10.1016/j.cortex.2012.01.009

  67. Mubarik, A., & Tohid, H. (2016). Frontal lobe alterations in schizophrenia: a review.Trends in Psychiatry and Psychotherapy, 38(4), 198-206. doi: 10.1590/2237-6089-2015-0088

  68. Murray, R. M., Bhavsar, V., Tripoli, G., & Howes, O. (2017). 30 Years on: Howthe Neurodevelopmental Hypothesis of Schizophrenia Morphed into theDevelopmental Risk Factor Model of Psychosis. Schizophrenia Bulletin, 43(6),1190-1196. doi: 10.1093/schbul/sbx121

  69. Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Frydecka, D., & Misiak, B. (2014).Homocysteine levels in schizophrenia and affective disorders-focus oncognition. Frontiers in Behavioral Neuroscience, 8, 343. doi: 10.3389/fnbeh.2014.00343

  70. Nakahara, S., Matsumoto, M., & van Erp, T. G. M. (2018). Hippocampal subregionabnormalities in schizophrenia: A systematic review of structural andphysiological imaging studies. Neuropsychopharmacology Reports, 38(4), 156-166. doi: 10.1002/npr2.12031

  71. Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S., & Belforte,J. E. (2012). GABAergic interneuron origin of schizophrenia pathophysiology.Neuropharmacology, 62(3), 1574-1583. doi: 10.1016/j.neuropharm.2011.01.022

  72. Nakazawa, K., & Sapkota, K. (2020). The origin of NMDA receptor hypofunctionin schizophrenia. Pharmacology & therapeutics, 205, 107426. doi: 10.1016/j.pharmthera.2019.107426

  73. Nickl-Jockschat, T., Schneider, F., Pagel, A. D., Laird, A. R., Fox, P. T., & Eickhoff,S. B. (2011). Progressive pathology is functionally linked to the domains oflanguage and emotion: meta-analysis of brain structure changes in schizophreniapatients. European Archives of Psychiatry and Clinical Neuroscience, 2(Suppl2), S166-S171. doi: 10.1007/s00406-011-0249-8

  74. Ordóñez, A. E., Luscher, Z. I., & Gogtay, N. (2016). Neuroimaging findings fromchildhood onset schizophrenia patients and their non-psychotic siblings.Schizophrenia Research, 173(3), 124-131. doi: 10.1016/j.schres.2015.03.003

  75. Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. Lancet (London,England), 388(10039), 86-97. doi: 10.1016/S0140-6736(15)01121-6

  76. Parellada, M., Gomez-Vallejo, S., Burdeus, M., & Arango, C. (2017). DevelopmentalDifferences Between Schizophrenia and Bipolar Disorder. SchizophreniaBulletin, 43(6), 1176-1189. doi: 10.1093/schbul/sbx126

  77. Rapoport, J. L., & Gogtay, N. (2011). Childhood onset schizophrenia: supportfor a progressive neurodevelopmental disorder. International Journal ofDevelopmental Neuroscience: the Official Journal of the InternationalSociety for Developmental Neuroscience, 29(3), 251-258. doi: 10.1016/j.ijdevneu.2010.10.003

  78. Rapp, C., Bugra, H., Riecher-Rössler, A., Tamagni, C., & Borgwardt, S. (2012).Effects of cannabis use on human brain structure in psychosis: a systematicreview combining in vivo structural neuroimaging and postmortemstudies. Current Pharmaceutical Design, 18(32), 5070-5080. doi:10.2174/138161212802884861

  79. Renard, J., Rushlow, W. J., & Laviolette, S. R. (2018). Effects of AdolescentTHC Exposure on the Prefrontal GABAergic System: Implications forSchizophrenia-Related Psychopathology. Frontiers in Psychiatry, 9, 281. doi:10.3389/fpsyt.2018.00281

  80. Ribolsi, M., Daskalakis, Z. J., Siracusano, A., & Koch, G. (2014). Abnormalasymmetry of brain connectivity in schizophrenia. Frontiers in HumanNeuroscience, 8, 1010. doi: 10.3389/fnhum.2014.01010

  81. Rubio, M. D., Drummond, J. B., & Meador-Woodruff, J. H. (2012). Glutamatereceptor abnormalities in schizophrenia: implications for innovativetreatments. Biomolecules & Therapeutics, 20(1), 1-18. doi: 10.4062/biomolther.2012.20.1.001

  82. Sheffield, J. M., & Barch, D. M. (2016). Cognition and resting-state functionalconnectivity in schizophrenia. Neuroscience and Biobehavioral Reviews, 61,108-120. doi: 10.1016/j.neubiorev.2015.12.007

  83. Smucny, J., Wylie, K. P., & Tregellas, J. R. (2014). Functional magnetic resonanceimaging of intrinsic brain networks for translational drug discovery. Trends inPharmacological Sciences, 35(8), 397-403. doi: 10.1016/j.tips.2014.05.001

  84. Steullet, P., Cabungcal, J. H., Monin, A., Dwir, D., O’Donnell, P., Cuenod, M., &Do, K. Q. (2016). Redox dysregulation, neuroinflammation, and NMDAreceptor hypofunction: A “central hub” in schizophrenia pathophysiology?Schizophrenia Research, 176(1), 41-51. doi: 10.1016/j.schres.2014.06.021

  85. Tenyi, T. (2011). Neurodevelopment and schizophrenia: data on minor physicalabnormalities and structural brain imaging. NeuropsychopharmacologiaHungarica: A Magyar Pszichofarmakologiai Egyesulet Lapja = OfficialJournal of the Hungarian Association of Psychopharmacology, 13(4), 229-232.

  86. Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation.Trends in Neurosciences, 29(3), 148-159. doi: 10.1016/j.tins.2006.01.007

  87. Turetsky, B., Hahn, C. G., Borgmann-Winter, K., & Moberg, P. J. (2009). Scentsand nonsense: olfactory dysfunction in schizophrenia. Schizophrenia Bulletin,35(6), 1117-1131. doi: 10.1093/schbul/sbp111

  88. van Erp, T., Walton, E., Hibar, D. P., Schmaal, L., Jiang, W., Glahn, D. C., … Turner, J.A. (2018). Cortical Brain Abnormalities in 4474 Individuals with Schizophreniaand 5098 Control Subjects via the Enhancing Neuro Imaging Genetics ThroughMeta Analysis (ENIGMA) Consortium. Biological Psychiatry, 84(9), 644-654.doi: 10.1016/j.biopsych.2018.04.023

  89. Vijayakumar, N., Bartholomeusz, C., Whitford, T., Hermens, D. F., Nelson, B.,Rice, S., … Amminger, G. P. (2016). White matter integrity in individuals atultra-high risk for psychosis: a systematic review and discussion of the role ofpolyunsaturated fatty acids. BMC Psychiatry, 16(1), 287. doi: 10.1186/s12888-016-0932-4

  90. Waddington, J. L., Katina, S., O’Tuathaigh, C., & Bowman, A. W. (2017).Translational Genetic Modelling of 3D Craniofacial Dysmorphology:Elaborating the Facial Phenotype of Neurodevelopmental Disorders Throughthe “Prism” of Schizophrenia. Current Behavioral Neuroscience Reports, 4(4),322-330. doi: 10.1007/s40473-017-0136-3

  91. Walton, E., Hibar, D. P., van Erp, T., Potkin, S. G., Roiz-Santiañez, R., Crespo-Facorro, B., … Ehrlich, S. (2018). Prefrontal cortical thinning links to negativesymptoms in schizophrenia via the ENIGMA consortium. PsychologicalMedicine, 48(1), 82-94. doi: 10.1017/S0033291717001283

  92. Wang, X., Pinto-Duarte, A., Sejnowski, T. J., & Behrens, M. M. (2013). How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptorantagonist model of schizophrenia. Antioxidants & Redox Signaling, 18(12),1444-1462. doi: 10.1089/ars.2012.4907

  93. Weinberg, S. M., Jenkins, E. A., Marazita, M. L., & Maher, B. S. (2007). Minorphysical anomalies in schizophrenia: a meta-analysis. Schizophrenia Research,89(1-3), 72-85. doi: 10.1016/j.schres.2006.09.002

  94. Wheeler, A. L., & Voineskos, A. N. (2014). A review of structural neuroimagingin schizophrenia: from connectivity to connectomics. Frontiers in HumanNeuroscience, 8, 653. doi: 10.3389/fnhum.2014.00653

  95. White, R. S., & Siegel, S. J. (2016). Cellular and circuit models of increased restingstatenetwork gamma activity in schizophrenia. Neuroscience, 321, 66-76. doi:10.1016/j.neuroscience.2015.11.011

  96. Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Arnone, D.(2017). Common and distinct patterns of grey-matter volume alteration in majordepression and bipolar disorder: evidence from voxel-based meta-analysis.Molecular Psychiatry, 22(10), 1455-1463. doi: 10.1038/mp.2016.72

  97. Wojtalik, J. A., Eack, S. M., Pollock, B. G., & Keshavan, M. S. (2012). Prefrontal graymatter morphology mediates the association between serum anticholinergicityand cognitive functioning in early course schizophrenia. Psychiatry Research,204(2-3), 61-67. doi: 10.1016/j.pscychresns.2012.04.014

  98. Wu, Q., Tang, W., Luo, Z., Li, Y., Shu, Y., Yue, Z., Xiao, B., & Feng, L. (2017).DISC1 Regulates the Proliferation and Migration of Mouse Neural Stem/Progenitor Cells through Pax5, Sox2, Dll1 and Neurog2. Frontiers in CellularNeuroscience, 11, 261. doi: 10.3389/fncel.2017.00261

  99. Xu, T., Chan, R. C., & Compton, M. T. (2011). Minor physical anomalies in patientswith schizophrenia, unaffected first-degree relatives, and healthy controls: ameta-analysis. PloS One, 6(9), e24129. doi; 10.1371/journal.pone.0024129




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Salud Mental. 2022;45

ARTíCULOS SIMILARES

CARGANDO ...