medigraphic.com
ENGLISH

Enfermedades Infecciosas y Microbiología

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 3

<< Anterior Siguiente >>

Enf Infec Microbiol 2022; 42 (3)


Equipo de protección personal: su importancia para disminuir el riesgo contra gotas y aerosoles

Zúñiga CIR, Miliar JR
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 30
Paginas: 132-137
Archivo PDF: 276.17 Kb.


PALABRAS CLAVE

gotas, aerosoles, sars-cov-2, equipo de protección personal.

RESUMEN

Las infecciones respiratorias se producen a través de la transmisión de gotitas que contienen virus (› 5 a 10 µm) y aerosoles (≤ 5 µm) exhalados por las personas infectadas cuando respiran, hablan, tosen y estornudan. Una gran proporción de la propagación de la enfermedad por coronavirus 2019 (COVID-19) parece estar ocurriendo a través de la transmisión aérea de aerosoles producidos por personas asintomáticas mientras respiran y hablan. Los aerosoles se pueden acumular y permanecer infecciosos en el aire interior durante horas, y pueden inhalarse fácilmente hacia los pulmones. Los seres humanos producimos gotitas respiratorias que oscilan entre 0.1 y 1 000 µm. Una competencia entre el tamaño de las gotas, la inercia, la gravedad y la evaporación determina qué tan lejos viajarán en el aire las gotas y los aerosoles emitidos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Instituto de Diagnóstico y Referencia Epidemiológicos,“Protocolo de bioseguridad y biocustodia para el manejode pacientes durante la toma de muestras de casosprobables por enfermedad por 2019-ncov”, 2020, México,Secretaría de Salud.

  2. Dirección de Prestaciones Médicas, Instituto Mexicanodel Seguro Social, “covid-19, toma de muestras ante uncaso sospechoso”, documento interno institucional,2020.

  3. Dirección de Prestaciones Médicas, Instituto Mexicanodel Seguro Social, “Toma, manejo y envío de muestraspara diagnóstico por laboratorio de covid-19”, documentointerno institucional, 2020.

  4. Dirección de Prestaciones Médicas, Unidad de AtenciónMédica, División de Programas de Enfermería, InstitutoMexicano del Seguro Social, “Prevención y control desars-cov-2. Uso de Equipo de Protección Personal”, documentointerno institucional.

  5. Porras Hernández, Juan Domingo, “Código de vestimentahospitalaria ante covid versión 1.1”, Hospital parael Niño Poblano, 2020.

  6. Dirección General de Calidad y Educación en Salud, Secretaríade Salud, “Definición de equipo de protecciónpersonal (epp) y acciones para aumentar su eficiencia”,documento interno institucional, 2020.

  7. Dirección Generalde Calidad y Educación en Salud, Secretaría deSalud, “Criterios y especificaciones para el uso del epp”,documento interno institucional, 2020.

  8. Ministerio de Salud y Protección Social, Colombia, “Lineamientospara kit de elementos mínimos de protecciónpara personal de la salud”, 2020.

  9. Prather, K., Wang, C. y Schooley, R., “Reducing transmissionof sars-cov-2”, Science, 2020, 368 (6498): 1422-1424.

  10. Leung, N., Chu, D., Shiu, E., Chan, K., McDevitt, J. etal., “Respiratory virus shedding in exhaled breath andefficacy of face masks”, Nat Med, 2020, 26: 676-680.

  11. Chan, J., Yuan, S., Zhang, A., Kwok-Man, V., Chan, C. etal., “Surgical mask partition reduces the risk of non-contacttransmission in a golden Syrian hamster model forcoronavirus disease 2019 (covid-19)”, Clin Infect Dis,2020, 644.

  12. Konda, A., Prakash, A., Moss, G., Schmoldt, M., Grant,G. et al., “Aerosol filtration efficiency of common fabricsused in respiratory cloth masks”, acs Nano, 2020, 14 (5):6339-6347.

  13. Smith, J., MacDougall, C., Johnstone, J., Copes, R.,Schwartz, B. et al., “Effectiveness of N95 respiratorsversus surgical masks in protecting health care workersfrom acute respiratory infection: a systematic reviewand meta-analysis”, cmaj, 2016, 188 (8): 567-574.

  14. Stadnytskyia, V., Baxb, C., Baxa, A. y Anfinruda, P., “Theairborne lifetime of small speech droplets and theirpotential importance in sars-cov-2 transmission”, pnas,2020, 117 (22): 11875-11877.

  15. Mittal, R., Ni, R. y Seo, J., “The flow physics of covid-19”,Fluid Mech, 2020, 894: 1-3.

  16. Buonanno, G., Stabile, L. y Morawska, L., “Estimationof airborne viral emission: quanta emission rate of sarscov-2 for infection risk assessment”, Environ Int, 2020,141: 105794.

  17. Tellier, R., Li, Y., Cowling, B. y Tang, J., “Recognition ofaerosol transmission of infectious agents: a commentary”,bmc Infect Dis, 2019, 19 (101): 2-9.

  18. Johnson, G. y Morawska, L., “The mechanism of breathaerosol formation”, J Aer Med Pul D Del, 2009, 22 (3):229-237.

  19. Dhand, R. y Li, J., “Coughs and sneezes: their role intransmission of respiratory viral infections, includingsars-cov-2”, Am J Respir Crit Care Med, 2020, 202 (5):651-659.

  20. Morawska, L. y Cao, J., “Airborne transmission of sarscov-2: the world should face the reality”, Environ Int,2020, 139: 105730.

  21. Bourouiba, L., “Turbulent gas clouds and respiratorypathogen emissions potential implications for reducingtransmission of covid-19”, jama, 2020, 323 (18): 1837-1838.

  22. Xie, X., Li, Y., Sun, H. y Liu, L., “Exhaled droplets due totalking and coughing”, J R Soc Interface, 2009, 6: 703-714.

  23. Zhu, S., Kato, S. y Yang, J., “Investigation of sars infectionvia droplets of coughed saliva”, Built Environmentand Public Health, Proceedings, 2nd International Conferenceon Built Environment and Public Health, 2004,341-354.

  24. Wang, B., Zhang, A., Sun, J., Liu, Y., Hu, J. et al., “Studyof sars transmission via liquid droplets in air”, Journalof Biomechanical Engineering-Transactions of the asme,2005, 127 (1): 32-38.

  25. Blocken, B., Malizia, F., Van Druenen, T. y Marchal, T.,“Towards aerodynamically equivalent covid-19 1.5 m socialdistancing for walking and running”. Disponible en: https://www.seen.es/ModulGEX/workspace/publico/modulos/web/docs/apartados/1366/130520_094154_1570697731.pdf Consultado: 21/01/21.

  26. Feldman, O., Meir, M., Shavit, D., Idelman, R. y Shavit,I., “Exposure to a surrogate measure of contaminationfrom simulated patients by emergency department personnelwearing personal protective equipment”, jama,2020, 323 (20): 2091-2093.

  27. Xiang, S., Kim, Y., Sutjipto, S., Ying, P., Edward, B. etal., “Absence of contamination of personal protectiveequipment (ppe) by severe acute respiratory syndromecoronavirus 2 (sars-cov-2) infection control & hospitalepidemiology”, Infect Control Hosp Epidemiol, 2020, 41(5): 614-616.

  28. Jones, N., Qureshi, Z., Temple, R., Larwood, J., Greenhalghet al., “Two metres or one: what is the evidencefor physical distancing in covid-19?”, bmj, 2020, 370:m3223.

  29. Dockery, D., Rowe, S., Murphy, M. y Krzystolik, M., “Theocular manifestations and transmission of covid-19: recommendationsfor prevention”, Jemermed, 2020, 04(60): 1-4.

  30. Conticini, E., Frediani, B. y Caro, D., “Can atmosphericpollution be considered a co-factor in extremely highlevel of sars-cov-2 lethality in Northern Italy?”, EnvironPollut, 2020, 261: 114465.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Enf Infec Microbiol. 2022;42

ARTíCULOS SIMILARES

CARGANDO ...