medigraphic.com
ENGLISH

Revista Salud Pública y Nutrición

Coordinación General de Investigación de la Facultad de Salud Pública y Nutrición y la Dirección General de Sistemas e Informática de la Universidad Autónoma de Nuevo León
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

Siguiente >>

Rev Salud Publica Nutr 2023; 22 (1)


Eficiencia de indicadores antropométricos y de composición corporal en el diagnóstico de obesidad abdominal infantil

Talavera-Hernandez LF, Méndez-Estrada RO, Contreras-Paniagua AD, Jiménez Pavón D, Caire-Juvera G, Ortega-Velez MI
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 35
Paginas: 1-10
Archivo PDF: 385.31 Kb.


PALABRAS CLAVE

Obesidad abdominal infantil, indicadores antropométricos, Absorciometría Dual de Rayos X.

RESUMEN

Introducción: Caracterizada por un exceso del tejido adiposo visceral (TAV), la obesidad abdominal incrementa el riesgo del síndrome metabólico. El método más popular para evaluar la obesidad infantil es el índice de masa corporal para la edad (IMC), aunque estudios recientes sugieren la circunferencia de cintura (CC) o el índice cintura-estatura (ICE).
Objetivo: Evaluar la eficiencia de indicadores antropométricos para predecir TAV y clasificar sobrepeso más obesidad (SO/OB).
Material y Método: Estudio transversal, analítico y comparativo. Se evaluaron 59 niños (47.5% mujeres) de 10.6 ± 2.1 años de edad en escuelas públicas de Hermosillo, Sonora, México; se examinaron variables antropométricas, estimando el IMC e ICE, se determinó el TAV mediante Absorciometría Dual de Rayos X (DEXA); se analizó mediante: regresión lineal múltiple, concordancia con el modelo de Bland y Altman e índice Kappa de Cohen.
Resultados: El modelo más eficiente para predecir TAV fue el de la CC (R2=0.90). Los indicadores antropométricos tuvieron buena concordancia entre sí en el diagnóstico de SO/OB (Kappa ≥ 0.6), aunque el análisis de Bland y Altman indicó buena concordancia entre CC-TAV e ICE-TAV.
Conclusiones: Los mejores predictores del TAV fueron CC e ICE. Los resultados sugieren que CC e ICE resultan los mejores indicadores para evaluar obesidad abdominal y diagnosticar SO/OB en niños y adolescentes mexicanos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aristazábal, J.-C., Estrada-Restrepo, A., & Barona, J.(2019). Waist-to-height ratio may be an alternative toolto the body mass index for identifying Colombianadolescents with cardiometabolic risk factors.Nutricion Hospitalaria, 36(1), 96–102.https://doi.org/https://doi.org/10.20960/nh.1909Available

  2. Blössner, M., Siyam, A., Borghi, E., Onyango, A., & DeOnis, M. (2009). WHO AnthroPlus for personalcomputers manual: software for assessing growth ofthe world’s children and adolescents. World HealthOrganization: Geneva, Switzerland.

  3. Bredella, M. A., Gill, C. M., Keating, L. K., Torriani, M.,Anderson, E. J., Punyanitya, M., Wilson, K. E., Kelly,T. L., & Miller, K. K. (2013). Assessment ofabdominal fat compartments using DXA inpremenopausal women from anorexia nervosa tomorbid obesity. Obesity, 21(12), 2458–2464.https://doi.org/10.1002/oby.20424

  4. Bristol (Reino Unido): Development Initiatives. (2021). Elestado de la nutrición en el mundo. In Informe de laNutrición Mundial 2021.https://globalnutritionreport.org/reports/2021-globalnutrition-report/executive-summary/

  5. Brown, T., Moore, T. H., Hooper, L., Gao, Y., Zayegh, A.,Ijaz, S., Elwenspoek, M., Foxen, S. C., Magee, L.,O’Malley, C., Waters, E., & Summerbell, C. D. (2019).Interventions for preventing obesity in children.Cochrane Database of Systematic Reviews, 7.https://doi.org/10.1002/14651858.CD001871.pub4

  6. CONAPO. (2018). Consejo Nacional de Población.www.conapo.gob.mx/es/CONAPO/Datos_Abiertos_del_%0AIndice_de_Marginacion

  7. Després, J. P., & Lemieux, I. (2006). Abdominal obesityand metabolic syndrome. Nature, 444(7121), 881–887.https://doi.org/10.1038/nature05488

  8. ENSANUT. (2019). Encuesta Nacional de Salud yNutrición 2018.https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf

  9. Faienza, M. F., Chiarito, M., Molina-Molina, E.,Shanmugam, H., Lammert, F., Krawczyk, M.,D’Amato, G., & Portincasa, P. (2020). Childhoodobesity, cardiovascular and liver health: a growingepidemic with age. World Journal of Pediatrics, 16(5),438–445. https://doi.org/10.1007/s12519-020-00341-9

  10. Fryar, C. D., Kruszon-Moran, D., Gu, Q., Carroll, M., &Ogden, C. L. (2021). Mean body weight, height, waistcircumference, and body mass index among childrenand adolescents: United states, 1999–2018. NationalHealth Statistics Reports, 2021(160), 1–23.https://doi.org/10.15620/cdc:107559

  11. Garrido-Miguel, M., Cavero-Redondo, I., Álvarez-Bueno,C., Rodríguez-Artalejo, F., Moreno, L. A., Ruiz, J. R.,Ahrens, W., & Martínez-Vizcaíno, V. (2019).Prevalence and Trends of Overweight and Obesity inEuropean Children from 1999 to 2016: A SystematicReview and Meta-analysis. JAMA Pediatrics, 173(10).https://doi.org/10.1001/jamapediatrics.2019.2430

  12. Goldberg, E. K., & Fung, E. B. (2020). Precision of thehologic DXA in the assessment of visceral adiposetissue. Journal of Clinical Densitometry, 23(4), 664–672.

  13. Hall López, J. A., Ochoa Martínez, P. Y., Borbón Román,J. C., & Monreal Ortíz, L. R. (2013). Prevalencia deporcentaje de grasa corporal, obesidad abdominal yestado nutricial en una escuela primaria de MexicaliBaja California México. International Journal ofMorphology, 31(4), 1269–1275.https://doi.org/10.4067/S0717-95022013000400020

  14. Haththotuwa, R. N., Wijeyaratne, C. N., & Senarath, U.(2020). Worldwide epidemic of obesity. In T. A.Mahmood, S. Arulkumaran, & F. A. B. T.-O. and O.(Second E. Chervenak (Eds.), Obesity and Obstetrics(pp. 3–8). Elsevier. https://doi.org/10.1016/B978-0-12-817921-5.00001-1

  15. Higgins, P. B., & Comuzzie, A. G. (2012). Measures ofWaist Circumference BT - Handbook ofAnthropometry: Physical Measures of Human Form inHealth and Disease (V. R. Preedy (ed.); pp. 881–891).Springer New York. https://doi.org/10.1007/978-1-4419-1788-1_51

  16. INEGI. (2013). Censo de Escuelas, Maestros y Alumnos deEducación Básica y Especial.https://www.inegi.org.mx/sistemas/mapa/atlas/

  17. INEGI. (2018). Mapa interactivo de Áreas GeoestadísticasBásicas (AGEB).https://www.inegi.org.mx/app/areasgeograficas/?ag=26

  18. Kelishadi, R., Mirmoghtadaee, P., Najafi, H., & Keikha,M. (2015). Systematic review on the association ofabdominal obesity in children and adolescents withcardio-metabolic risk factors. Journal of Research inMedical Sciences, 20(3), 294–307.

  19. López-Alonzo, S. J., Gastélum Cuadras, G., Islas Guerra,S. A., Chávez Erives, A. I., & Orona Escápite, A.(2021). Relación entre actividad física y obesidad enescolares de primaria del norte de México. RevistaIberoamericana de Ciencias de La Actividad Física yEl Deporte, 10(1), 15–25.https://doi.org/10.24310/riccafd.2021.v10i1.10650

  20. López-González, D., Miranda-Lora, A., Klünder-Klünder,M., Queipo-García, G., Bustos-Esquivel, M., Paez-Villa, M., Villanueva-Ortega, E., Chávez-Requena, I.,Laresgoiti-Servitje, E., & Garibay-Nieto, N. (2016).Diagnostic Performance of Waist CircumferenceMeasurements for Predicting Cardiometabolic Risk inMexican Children. Endocrine Practice , 22(10), 1170–1176. https://doi.org/10.4158/EP161291.OR

  21. Martınez-González, M. A., Sánchez-Villegas, A., &Faulin, J. (2006). Bioestadıstica amigable. EditorialDıaz de Santos, Madrid, Spain.

  22. Nagy, P., Kovacs, E., Moreno, L. A., Veidebaum, T.,Tornaritis, M., Kourides, Y., Siani, A., Lauria, F.,Sioen, I., Claessens, M., Mårild, S., Lissner, L.,Bammann, K., Intemann, T., Buck, C., Pigeot, I.,Ahrens, W., & Molnár, D. (2014). Percentile referencevalues for anthropometric body composition indices inEuropean children from the IDEFICS study.International Journal of Obesity, 38, S15–S25.https://doi.org/10.1038/ijo.2014.131

  23. Noubiap, J. J., Nansseu, J. R., Lontchi-Yimagou, E.,Nkeck, J. R., Nyaga, U. F., Ngouo, A. T., Tounouga,D. N., Tianyi, F. L., Foka, A. J., Ndoadoumgue, A. L.,& Bigna, J. J. (2022). Global, regional, and countryestimates of metabolic syndrome burden in childrenand adolescents in 2020: a systematic review andmodelling analysis. The Lancet Child & AdolescentHealth, 6(3), 158–170.https://doi.org/https://doi.org/10.1016/S2352-4642(21)00374-6

  24. Onis, M. de, Onyango, A. W., Borghi, E., Siyam, A.,Nishida, C., & Siekmann, J. (2007). Development of aWHO growth reference for school-aged children andadolescents. Bulletin of the World HealthOrganization, 85, 660–667.

  25. Ostchega, Y., Seu, R., Sarafrazi, I. N., Zhang, G., Hughes,J., & Miller, I. (2019). Waist circumferencemeasurement methodology study : National Health andNutrition examination survey , 2016 data evaluationand methods research. National Center for HealthStatistics, 2(182), 1–20.https://lccn.loc.gov/2018054057

  26. Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J.,Magni, P., Santos, R. D., Arsenault, B., Cuevas, A.,Hu, F. B., Griffin, B. A., Zambon, A., Barter, P.,Fruchart, J. C., Eckel, R. H., Matsuzawa, Y., &Després, J. P. (2020). Waist circumference as a vitalsign in clinical practice: a Consensus Statement fromthe IAS and ICCR Working Group on VisceralObesity. Nature Reviews Endocrinology, 16(3), 177–189. https://doi.org/10.1038/s41574-019-0310-7

  27. Ruiz De Eguilaz, M. H., Martínez De Morentín, B., Pérez-Diez, S., Navas-Carretero, S., & Martínez, J. A. (2010).Estudio comparativo de medidas de composicióncorporal por absorciometría dual de rayos X,bioimpedancia y pliegues cutańeos en mujeres. Analesde La Real Academia Nacional de Farmacia, 76(2),209–222.

  28. Serrano, B. R., Ramírez-López, G., Barajas, M. A. A., &Hoyos, J. R. C. (2021). Socio-family variablesassociated with a higher risk of overweight andabdominal obesity in school children from a pediatricservice at Colima, Mexico. ArchivosLatinoamericanos de Nutricion, 71(2), 104–113.https://doi.org/10.37527/2021.71.2.003

  29. Shamah-Levy, T., Romero-Martínez, M., Barrientos-Gutiérrez, T., Cuevas-Nasu, L., Bautista-Arredondo,S., Colchero, M., Gaona-Pineda, E., Lazcano-Ponce,E., Martínez-Barnetche, J., Alpuche-Arana, C., &Rivera-Dommarco, J. (2021). Encuesta Nacional deSalud y Nutrición 2020 sobre Covid-19. Resultadosnacionales (Instituto Nacional de Salud Pública (ed.)).

  30. Shaw, K. A., Srikanth, V. K., Fryer, J. L., Blizzard, L.,Dwyer, T., & Venn, A. J. (2007). Dual energy X-rayabsorptiometry body composition and aging in apopulation-based older cohort. International Journalof Obesity, 31(2), 279–284.https://doi.org/10.1038/sj.ijo.0803417

  31. Stewart, A., Marfell-Jones, M., Olds, T., & Ridder, H.(2011). Protocolo internacional para la valoraciónantropométrica ISAK (ISAK (ed.); 2011th ed.).31. Tutunchi, H., Ebrahimi-Mameghani, M., Ostadrahimi, A.,& Asghari-Jafarabadi, M. (2020). What are the optimalcut-off points of anthropometric indices for predictionof overweight and obesity? Predictive validity of waistcircumference, waist-to-hip and waist-to-height ratios.Health Promotion Perspectives, 10(2), 142–147.https://doi.org/10.34172/hpp.2020.23

  32. UNICEF. (2022). Salud y nutrición. Salud y Nutrición.https://www.unicef.org/mexico/salud-y-nutrición

  33. Valle-Leal, J., Abundis-Castro, L., Hernández-Escareño,J., & Flores-Rubio, S. (2016). Índice Cintura-EstaturaComo Indicador De Riesgo Metabólico En Niños.Revista Chilena de Pediatria, 87(3), 180–185.https://doi.org/10.1016/j.rchipe.2015.10.011

  34. Vanderwall, C., Eickhoff, J., Randall Clark, R., & Carrel,A. L. (2018). BMI z-score in obese children is a poorpredictor of adiposity changes over time. BMCPediatrics, 18(1), 1–6.https://doi.org/10.1186/s12887-018-1160-5

  35. Xi, B., Zong, X., Kelishadi, R., Litwin, M., Hong, Y. M.,Poh, B. K., Steffen, L. M., Galcheva, S. V., Herter-Aeberli, I., Nawarycz, T., Krzywińska-Wiewiorowska,M., Khadilkar, A., Schmidt, M. D., Neuhauser, H.,Schienkiewitz, A., Kułaga, Z., Kim, H. S., Stawińska-Witoszyńska, B., Motlagh, M. E., … Bovet, P. (2020).International waist circumference percentile cutoffs forcentral obesity in children and adolescents aged 6 to 18years. Journal of Clinical Endocrinology andMetabolism, 105(4), E1569–E1583.https://doi.org/10.1210/clinem/dgz195




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Salud Publica Nutr. 2023;22

ARTíCULOS SIMILARES

CARGANDO ...