Entrar/Registro  
INICIO ENGLISH
 
Enfermedades Infecciosas y Microbiología
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Enfermedades Infecciosas y Microbiología >Año 2002, No. 2


Morfín OR, Esparza AS, Rodríguez NE
Las aplicaciones clínicas de la farmacodinámica y farmacocinética de linezolid
Enf Infec Microbiol 2002; 22 (2)

Idioma: Español
Referencias bibliográficas: 50
Paginas: 69-74
Archivo PDF: 64.15 Kb.


Texto completo




RESUMEN

Antecedentes. La resistencia en bacterias grampositivas se ha ido incrementando en los últimos años. Las bacterias resistentes como Staphylococcus aureus, Streptococcus pneumoniae y Enterococcus patógenos frecuentes en infecciones comunitarias y nosocomiales. El tratamiento de las infecciones por grampositivos resistentes se complica por la resistencia a meticilina/oxacilina en S. aureus, a penicilinas en S. pneumoniae y a vancomicina en Enterococos. Objetivo. Revisar las propiedades farmacocinéticas y farmacodinámicas de linezolid. Fuentes de información. Búsqueda en Medline de estudios relacionados con la farmacocinética y farmacodinámica de linezolid. Selección de estudios. Se revisaron cincuenta estudios. Resultados. Linezolid es un nuevo agente antimicrobiano que pertenece a la familia de las oxazolidinonas. Linezolid es un inhibidor de síntesis proteica. Linezolid es activo contra una variedad de bacterias grampositivas sensibles y resistentes. Después de la administración de 600 mg la vida media es de 5.5 horas en la fase de eliminación, las concentraciones máximas promedio en plasma son de 15 a 21 μg/mL. La biodisponibilidad después de su administración oral es del 100%, con un tiempo para concentración máxima por esta vía de administración de 1.0 a 1.5 horas. Linezolid tiene una buena penetración tisular incluyendo piel y sus estructuras y el tejido pulmonar. La dosis usual de linezolid en adultos es de 600 mg cada 12 horas y en pediatría la dosis usual será muy probablemente de 10 mg/kilo cada 8 horas. El éxito terapéutico de linezolid está relacionado directamente con una concentración superior a las concentraciones inhibitorias mínimas, que excedan el 39% del tiempo entre dosis. La absorción rápida después de la administración oral facilitará altas tempranas de pacientes con infecciones severas. Conclusiones. Las características farmacocinéticas, farmacodinámicas y de farmacoeconomía son bases para el uso de linezolid en el tratamiento de infecciones por bacterias grampositivas resistente.


Palabras clave: linezolid, propiedades farmacocinéticas y farmacodinámicas.


REFERENCIAS

  1. Moellering RC Jr. A novel antimicrobial agent joins the battle against resistant bacteria. Ann Intern Med 1999;130(2):155-7.

  2. Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant Gram-positive bacterial infections. Clin Infect Dis 2000;30(1):146-51.

  3. Plouffe JF. Emerging therapies for serious Gram-positive bacterial infections: a focus on linezolid. Clin Infect Dis 2000;31(Suppl 4):S144-9.

  4. Shinabarger DL, et al. Mechanism ofaction of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 1997;41(10):2132-6.

  5. Swaney SM, et al. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 1998;42(12):3251-5.

  6. Slee AM, et al. Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob Agents Chemother 1987;31(11):1791-7.

  7. Ford CW, et al. In vivo activities of U-100592 and U-100766, novel oxazolidinone antimicrobial agents, against experimental bacterial infections. Antimicrob Agents Chemother 1996;40(6): 1508-13.

  8. Zurenko GE, et al. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 1996;40(4):839-45.

  9. Noskin GA, et al. In vitro activities of linezolid against important Gram-positive bacterial pathogens including vancomycin-resistant enterococci. Antimicrob Agents Chemother 1999;43(8): 2059-62.

  10. Jones ME, et al. Comparative activities of clinafloxacin, grepafloxacin, levofloxacin, moxifloxacin, ofloxacin, sparfloxacin, and trovafloxacin and nonquinolones linozelid, quinupristin-dalfopristin, gentamicin, and vancomycin against clinical isolates of ciprofloxacin-resistant and -susceptible Staphylococcus aureus strains. Antimicrob Agents Chemother 1999;43(2): 421-3.

  11. Rybak MJ, et al. In vitro activities of daptomycin, vancomycin, linezolid, and quinupristin-dafflopristin against Staphylococci and Enterococci, including vancomycin-intermediate and-resistant strains. Antimicrob Agents Chemother 2000;44(4):1062-6.

  12. Betriu C, et al. Comparative in vitro activities of linezolid, quinupristin-dalfopristin, moxifloxacin, and trovafloxacin against erythromycin-susceptible and -resistant Streptococci. Antimicrob Agents Chemother 2000;44(7):1838-41.

  13. Betriu C, et al. Comparative activity of linezolid and other new agents against methicillin-resistant Staphylococcus aureus and teicoplanin-intermediate coagulase-negative Staphylococci. J Antimicrob Chemother 2001;48(6):911-3.

  14. Zaoutis T, et al. In vitro activities of linezolid, meropenem, and quinupristin-dalfopristin against group C and G streptococci, including vancomycin-tolerant isolates. Antimicrob Agents Chemother 2001;45(7):1952-4.

  15. Henwood CJ, et al. Susceptibility of Gram-positive coccifrom 25 UK hospitals to antimicrobial agents including linezolid. The Linezolid Study Group. J Antimicrob Chemother 2000; 46(6):931-40.

  16. Jones RN, Ballow CH, Biedenbach DJ. Multi-laboratory assessment of the linezolid spectrum of activity using the Kirby-Bauer disk diffusion method: Report of the Zyvox Antimicrobial Potenc Study (Z4PS) in the United States. Diagn Microbiol Infect Dis 2001;40(1-2):59-66.

  17. Cercenado E, Garcia-Garrote F, Bouza E. In vitro activity of linezolid against multiply resistant Gram-positive clinical isolates. J Antimicrob Chemother 2001;47(1):77-81.

  18. Ballow CH, et al. Multicenter Assessment of the Linezolid Spectrum and Activity Using the Disk Diffusion and Etest Methods: Report of the Zyvox (R) Antimicrobial Potency Study in Latin America (LA-Z4PS). Braz J Infect Dis, 2002.6(3):100-109.

  19. Gee T, et al. Pharmacokinetics and tissue penetration of linezolid following multiple oral doses. Antimicrob Agents Chemother 2001;45(6):1843-6.

  20. Perry CM, Jarvis B. Linezolid: a review of its use in the management of serious Gram-positive infections. Drugs 2001;61(4): 525-51.

  21. Kaye KS, Frairnow HS, Abrutyn E. Pathogens resistant to antimicrobial agents. Epidemiology, molecular mechanisms, and clinical management. Infect Dis Clin North Am 2000;14(2): 293-319.

  22. Chadwick PR, Wooster SL, Glycopeptide resistance in Staphylococcus aureus. J Infect 2000;40(3):211-7.

  23. Lundstrom TS, Sobel JD. Antibiotics for gram-positive bacterial infections. Vancomycin, teicoplanin, quinupristin/dalfopristin, and linezolid. Infect Dis Clin North Am 2000;14(2):463-74.

  24. Paradisi F, Corti G, Messeri D. Antistaphylococcal (MSSA, MRSA, MSSE, MRSE) antibiotics. Med Clin North Am 2001;85(1):1-17.

  25. Kaplan SL. Use of linezolid in children. Pediatr Infect Dis J 2002;1(9):870-2.

  26. Kaplan SL, et al. Linezolid for the treatment of community-acquired pneumonia in hospitalized children. Linezolid Pediatric Pneumonia Study Group. Pediatr Infect Dis J 2001; 20(5): 488-94.

  27. Graham PL, Ampofo K, Saiman L. Linezolid treatment of vancomycin-resistant Enterococcus faecium ventriculitis. Pediatr Infect Dis J 2002;21(8):798-800.

  28. Kearns GL, et al. Single dose pharmacokinetics of linezolid in infants and children. Pediatr Infect Dis J 2000;19(12):1178-84.

  29. Conte JE Jr, et al. Intrapulmonary pharmacokinetics of linezolid. Antimicrob Agents Chemother2002;46(5):1475-80.

  30. Gentry-Nielsen MJ, Olsen KM, Preheim LC. Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia. Antimicrob Agents Chemother 2002;46(5): 1345-51.

  31. Yanagihara K, et al. Efficacy of linezolid against methicillin-resistant or vancomycin-insensitive Staphylococcus aureus in a model of hematogenous pulmonary infection. Antimicrob Agents Chemother 2002;46(10):3288-91.

  32. Zeana C, et al. Vancomycin-resistant Enterococcus faecium meningitis successfully managed with linezolid: case report and review of the literature. Clin Infect Dis 2001;33(4):477-82.

  33. Hachem R, et al. Successful treatment of vancomycin-resistant Enterococcus meningitis with linezolid. Eur J Clin Microbiol Infect Dis 2001;20(6):432-4.

  34. Shaikh ZH, Peloquin CA, Ericsson CD. Successful treatment of vancomycin-resistant Enterococcus faecium meningitis with linezolid: case report and literature review. Scand J Infect Dis 2001;33(5):375-9.

  35. Villani P, et al. Cerebrospinal fluid linezolid concentrations in postneurosurgical central nervous system infections. Antimicrob Agents Chemother 2002;46(3):936-7.

  36. Pelton SI, et al. Efficacy of linezolid in experimental otitis media. Antimicrob Agents Chemother 2000;44(3):654-7.

  37. McNeil SA, et al. Successful treatment of vancomycin-resistant Enterococcus faecium bacteremia with linezolid afterfailure of treatment with synercid (quinupristin/dalfopristin). Clin Infect Dis 2000;30(2):403-4.

  38. Babcock HM, et al. Successful treatment of vancomycin-resistant Enterococcus endocarditis with oral linezolid. Clin Infect Dis 2001;32(9):1373-5.

  39. Patel R, et al. Linezolid therapy of vancomycin-resistant Enterococcus faecium experimental endocarditis. Antimicrob Agents Chemother 2001;45(2):621-3.

  40. Dailey CF, et al. Efficacy of linezolid in treatment of experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001;45(8): 2304-8.

  41. Melzer M, Goldsmith D, Gransden W. Successful treatment of vertebral osteomyelitis with linezolid in a patient receiving hemodialysis and with persistent methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus bacteremias. Clin Infect Dis 2000;31(1):208-9.

  42. Till M, Wixson RL, Pertel PE, Linezolid treatment for osteomyelitis due to vancomycin-resistant Enterococcus faecium. Clin Infect Dis 2002;34(10):1412-4.

  43. Bassetti M, et al. Linezolid treatment of prosthetic hip Infections due to methicillin-resistant Staphylococcus aureus (MRSA). J Infect 2001;43(2):148-9.

  44. Drago L, et al. Effect of linezolid in comparison with that of vancomycin on glycocalix production: in vitro study. Antimicrob Agents Chemother 2002;46(2):598-9.

  45. Gerson SL, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother 2002;46(8):2723-6.

  46. Attassi K, et al. Thrombocytopenia associated with linezolid therapy. Clin Infect Dis 2002;34(5):695-8.

  47. Kuter DJ, Tillotson GS, Hematologic effects of antimicrobials: focus on the oxazolidinone linezolid. Pharmacotherapy 2001;21(8):1010-3.

  48. Lawyer MC, Lawyer EZ. Linezolid and reversible myelosuppression. Jama 2001;286(16):1974.

  49. Li Z, et al. Comparison of length of hospital stay for patients with known or suspected methicillin-resistant Staphylococcus species infections treated with linezolid or vancomycin: a randomized, multicenter trial. Phannacotherapy 2001;21(3):263-74.

  50. Li JZ, et al. Approaches to analysis of length of hospital stay related to antibiotic therapy in a randomized clinical trial: linezolid versus vancomycin for treatment of known or suspected methicillin-resistant Staphylococcus species infections. Pharmacotherapy 2002;22(2 Pt 2):45S-54S.



>Revistas >Enfermedades Infecciosas y Microbiología >Año2002, No. 2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019