medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 2

<< Anterior Siguiente >>

salud publica mex 2023; 65 (2)


Hongos entomopatógenos para el control de larvas y adultos de Aedes aegypti en México

Cisneros-Vázquez LA, Penilla-Navarro RP, Rodríguez AD, Ordóñez-González JG, Valdez-Delgado KM, Danis-Lozan R, Vázquez-Martínez MG
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 35
Paginas: 144-150
Archivo PDF: 359.48 Kb.


PALABRAS CLAVE

hongos nativos, larvicidas, control de mosquitos, Aedes aegypti.

RESUMEN

Objetivo. Evaluar la actividad larvicida y adulticida de 15 cepas nativas de hongos en Aedes aegypti. Material y métodos. Larvas de tercer instar se expusieron por 72 h a concentraciones de 1x108 conidias/ml del hongo; sólo los que afectaron significativamente a las larvas se evaluaron contra los mosquitos adultos a concentraciones de 2x1010 conidias/ml. Se documentaron las mortalidades a las 24, 48 y 72 h para larvas, y cada día por 30 días para adultos. Resultados. Sólo Trichoderma longibrachiatum, Aspergillus aculeatus y Metarhizium anisopliae tuvieron la mayor actividad larvicida a las 24 h (p‹0.05), causando mortalidades de 100, 72 y 62%, respectivamente. Los mosquitos adultos fueron más afectados por Gliocladium virens con mortalidades de 45%, M. anisopliae (mortalidad de 30%) y T. longibrachiatum (mortalidad de 23.33%) (p‹0.05). Conclusión. Las larvas de Ae. aegypti fueron más susceptibles a la acción patogénica de los hongos nativos que los adultos, siendo T. longibrachiatum el más virulento.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Pan American Health Organization. World Health Organization. Epidemiologicalupdate: Dengue. Reported cases of Dengue in The Americasby Country or Territory. Cumulative cases 2020. Washington, DC: PAHO, 2021 [cited Feb 17 2021]. Available from: https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html

  2. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG,et al. Refining the global spatial limits of Dengue virus transmission byevidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760.

  3. Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P. Epidemiologyof Chikungunya in the Americas. J Infect Dis. 2016;214(5):S441-5. https://doi.org/10.1093/infdis/jiw390

  4. Musso D, Nilles EJ, Cao-Lormeau VM. Rapid spread of emerging Zikavirus in the Pacific área. Infection Hot Topic. 2014;20(10):PO595-6. https://doi.org/10.1111/1469-0691.12707

  5. Zhang Q, Sun K, Chinazzi M, Pastore y Piontti A, Dean NE, RojasDP, et al. Spread of Zika virus in the Americas. Proc Natl Acad Sci.2017;114(22):E4334-43. https://doi.org/10.1073/pnas.1620161114

  6. Brady OJ, Hay SI. The first local cases of Zika virus in Europe.Lancet. 2019;394(10213): P1991-92. https://doi.org/10.1016/S0140-6736(19)32790-4

  7. World Health Organization. Dengue guidelines for diagnosis,treatment, prevention and control: new edition. Geneva: WHO,2009 [cited Feb 18 2022]. Available from: https://apps.who.int/iris/handle/10665/44188

  8. Saavedra-Rodriguez K, Campbell CL, Lenhart A, Penilla P, Lozano-FuentesS, Black WC 4th. Exome-wide association of deltamethrin resistancein Aedes aegypti from Mexico. Insect Mol Biol. 2019;28(5):591-604. https://doi.org/10.1111/imb.12575

  9. Solis-Santoyo F, Rodriguez AD, Penilla-Navarro RP, Sanchez D, Castillo-Vera A, Lopez-Solis A, et al. Insecticide resistance in Aedes aegypti fromTapachula, Mexico: Spatial variation and response to historical insecticideuse. PLoS Negl Trop Dis. 2021;15(9):e0009746. https://doi.org/10.1371/journal.pntd.0009746

  10. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporarystatus of insecticide resistance in the major Aedes vectors ofarboviruses infecting humans. PLoS Negl Trop Dis. 2017;11(7):e0005625.https://doi.org/10.1371/journal.pntd.0005625

  11. Barra-Bucarei L, Vergara P, Cortes A. Conditions to optimize massproduction of Metarhizium anisopliae (Metschn) Sorokin 1883 in differentsubstrates. Chilean J of Agri Res. 2016;76(4). https://doi.org/10.4067/S0718-58392016000400008

  12. Scholte EJ, Knols BG, Takken W. Autodissemination of the entomopathogenicfungus Metarhizium anisopliae amongst adults of themalaria vector Anopheles gambiae s.s. Malar J. 2004;3(45):1-6. https://doi.org/10.1186/1475-2875-3-45

  13. Blandford S, Chan B, Jenkins N, Sim D, Turner RJ, Read AF, ThomasMB. Fungal pathogen reduces potential for malaria transmission. Science.2005;308:1638-41.

  14. Scholte EA, Ng´habi K, Kihonda J, Takken W, Paaijmans K, Abdulla S, etal. An entomopathogenic fungus control of adult African malaria mosquitoes.Science. 2005;308:1641-42.

  15. Vázquez-Martínez MG, Rodríguez A, Rodríguez AD, Rodríguez MH.Lethal effects of Gliocladium virens, Beauveria bassiana and Metarhiziumanisopliae on the malaria vector Anopheles albimanus (Diptera: Culicidae). JBio Sci Technol. 2013;23(09):1098-1109.

  16. Silva R, Silva H, Luz C. Effect of Metarhizium anisopliae isolated fromsoil samples of central Brazilian cerrado against Aedes aegypti larvae underlaboratory conditions. Rev Patol Trop. 2004;33(2):207-16.

  17. Pelliza S, López-Lastra C, Becnel J, Bisaro V, Garcia J. Biotic and abioticfactors affecting Leptogenia chapmanii infection in Aedes aegypti. J Am MosqControl Assoc. 2007;23(2):177-81.

  18. Seye F, Faye O, Ndiaye M, Njie E, Afoutou JM. Pathogenicity of thefungus, Aspergillus clavatus, isolated from the locust, Oedaleus senegalensis,against larvae of the mosquitoes Aedes aegypti, Anopheles gambiae andCulex quinquefasciatus. J Insect Sci. 2009;9(53):1-7.

  19. Scholte EJ, Takken W, Bart GJ. Infection of adult Aedes aegypti and Ae.albopictus mosquitoes with the entomopathogenic fungus Metarhiziumanisopliae. Acta Trop. 2007;102(3):151-58.

  20. Rodrigues de Paula A, Souza E, Ronald C, Pinheiro M, Ian R. Susceptibilityof adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhiziumanisopliae and Beauveria bassiana: prospects for Dengue vector control.Biocontrol Sci Technol. 2008;(10):1017-25.

  21. Leles RN, Almeida N, Nunes LF, Santos AH, Garcia HH, Luz C.Pathogenicity of some hypocrealean fungi to adult Aedes aegypti (Diptera:Culicidae). Parasitol Res. 2010;107:1271-74.

  22. Luz C, Tai M, Santos A, Rocha L, Albernaz D, Silva H. Ovicidal activityof entomopathogenic hyphomycetes on Aedes aegypti (Diptera: Culicidae)under laboratory conditions. J Am Mosq Control Assoc. 2007;23(2):50-57.

  23. World Health Organization. Guidelines for laboratory and field-testingof mosquito larvicides. Geneva: WHO, 2005 [cited Feb 17 2021]. Availablefrom: http://apps.who.int/iris/bitstream/10665/69101/1/WHO_CDS_WHOPES_GCDPP_2005.13.pdf

  24. Vázquez-Martínez MG, Gálvez-Coutiño OR, Rodríguez-Meneses A.Isolation and selection of stocks of fungi for the Anopheles albimanus mosquitocontrol. In: American Mosquito Control Association. 74nd Annualmeeting. Nevada: American Mosquito Contro Association, 2008.

  25. Hansen PJ. Use of hemacytometer. Florida: University of Florida, 2000[cited Feb 17 2021]. Available from: http://www.smccd.edu/accounts/case/biol230/algae/hemocytometer1.pdf

  26. Goettel MS, Inglis G. Fungi: Hyphomicetes. In: Lacey LA, (ed.). Manual oftechniques in insect pathology. Academic Press, 1997:213-50.

  27. García-Munguía AM, Garza-Hernández JA, Rebollar-Tellez EA, Rodríguez-Pérez MA, Reyes-Villanueva F. Transmission of Beauveria bassianafrom male to female Aedes aegypti mosquitoes. Parasit Vectors. 2011;4:24.

  28. Lage de Moraes AM, Lara da Costa G, Camargo M, Lourenço deOliveira R, Cunha de Oliveria P. The entomopatogenic potential of Aspergillusspp. in mosquitoes vectors of tropical diseases. J Basic Microbiol.2001;41(1):45-49.

  29. Inglis GD, Goettel MS, Butt TM, Strasser H. Use of Hyphomycetousfungi for managing insect pests. In: Butt TM, Jackson C, Magan N, (eds).Fungi as biocontrol agents progress, problem and potential. CABI publishing.2001:23-69.

  30. Farenhorst M, Knols GJ. A novel method for standardized applicationof fungal spore coatings for mosquito exposure bioassays. Malar J.2010;9:27.

  31. Govindarajan M, Jebanesan A, Reetha D. Larvicidal effect of extracelularsecondary metabolites of different fungi against the mosquito, Culexquinquefasciatus Say. Trop Biomed. 2005;22(1):1-3.

  32. Sweeney A. The time-mortality response of mosquito larvae infectedwith the fungus Culicinomyces. J Invertebr Pathol. 1983;42:162-66.

  33. Prasad A, Veerwal B. Biotoxicity of entomopathogenic fungus Beauveriabassiana (balsamo) vuillemin, against early larval instar of anophelinemosquitoes. J Herb Med Toxicol. 2010;4(2):181-88.

  34. Alves SB, Alves LF, Lopes B, Pereira RM. Vieira A. Potential of someMetarhizium anisopliae isolates for control of Culex quinquefasciatus (Diptera:Culicidae). J Appl Entomol. 2002;126(9):504-09.

  35. Bilal H, Hassan SA, Khan IA. Isolation and efficacy of entomopathogenicfungus (Metarhizium anisopliae) for the control of Aedes albopictus Skuselarvae: suspected dengue vector in Pakistan. Asian Pac J Trop Biomed.2012;2(4):298-300.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2023;65

ARTíCULOS SIMILARES

CARGANDO ...