medigraphic.com
ENGLISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 2

<< Anterior Siguiente >>

Rev Biomed 2023; 34 (2)


Género Aeromonas como patógeno oportunista emergente en peces y humanos, y su resistencia a antibióticos

Montes PDA, Baez A, Venegas B, Reyes-Luna EML, Molina-Romero D
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 69
Paginas: 191-207
Archivo PDF: 480.71 Kb.


PALABRAS CLAVE

Aeromonas, resistencia a antibióticos, genes, biopelícula, factores de virulencia.

RESUMEN

Aeromonas es un género bacteriano reportado como patógeno emergente; debido a su capacidad de generar enfermedades infecciosas que afectan el sistema gastrointestinal, el circulatorio y algunos tejidos blandos de individuos inmunocomprometidos, adultos mayores e infantes. También, Aeromonas se comporta como un patógeno oportunista de mamíferos y peces, y posee diversos factores de virulencia. Este género prolifera en diversos ambientes como el suelo, agua y diferentes hospederos. La presente revisión bibliográfica tiene como objetivo describir los procesos metabólicos y genéticos que le confieren al género Aeromonas la resistencia a antibióticos, la capacidad de formar biopelícula, los genes regulados por el Quorum Sensing (QS) y la transferencia horizontal de genes. Además, de discutir algunas características que posicionan a la infección por Aeromonas como un problema potencial de salud pública. La revisión exhaustiva se realizó en las bases de datos del Centro Nacional de Información Biotecnológica (NCBI) y del Instituto Multidisciplinario de Publicaciones Digitales (MDPI), del 2017 a la fecha y se consideraron los siguientes criterios de búsqueda: factores de virulencia, resistencia a antibióticos formación de biopelícula y transferencia horizontal de genes. La investigación indicó que Aeromonas presenta varios factores de virulencia extracelulares, enzimáticos y estructurales; es resistente a antibióticos como betalactámicos, tetraciclinas y macrólidos y presenta varios genes que le confieren esta resistencia; asimismo, el género tiene la capacidad de formar biopelícula y posee tres sistemas de QS.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Gomes S, Fernandes C, Monteiro S, Cabecinha E, TeixeiraA, Varandas S, et al. The role of aquatic ecosystems(River Tua, Portugal) as reservoirs of multidrug-resistantAeromonas spp. Water. 2021 Mar 5;13(5):698. https://doi.org/10.3390/w13050698

  2. Lee HJ, Hoel S, Lunestad BT, Lerfall J, Jakobsen AN.Aeromonas spp. isolated from ready‐to‐eat seafood onthe Norwegian market: prevalence, putative virulencefactors and antimicrobial resistance. Journal of AppliedMicrobiology. 2021 Apr;130(4):1380-93. https://doi.org/10.1111/jam.14865

  3. Dong J, Zhang L, Liu Y, Xu N, Zhou S, Yang Q, etal. Thymol protects channel catfish from Aeromonashydrophila infection by inhibiting aerolysinexpression and biofilm formation. Microorganisms.2020 Apr 27;8(5):636. https://doi.org/10.3390/microorganisms8050636

  4. Bhowmick UD, Bhattacharjee S. Bacteriological,Clinical and Virulence Aspects of-associated Diseasesin Humans. Polish Journal of Microbiology. 2018 Jun30;67(2):137-50. https://doi.org/10.21307/pjm-2018-020

  5. Lin X, Lu J, Qian C, Lin H, Li Q, Zhang X, et al.Molecular and Functional Characterization of a NovelPlasmid-Borne blaNDM-Like Gene, blaAFM-1, in aClinical Strain of Aeromonas hydrophila. Infection andDrug Resistance. 2021; 14:1613. doi: 10.2147/IDR.S297419

  6. Pessoa RB, de Oliveira WF, Marques DS, dos SantosCorreia MT, de Carvalho EV, Coelho LC. The genusAeromonas: A general approach. Microbial pathogenesis.2019 May 1; 130:81-94. https://doi.org/10.1016/j.micpath.2019.02.036.

  7. Organización Mundial de la Salud. Manual deBioseguridad en el Laboratorio. Tercera Edición.OMS, 2005. https://www.who.int/es/publications/i/item/9241546506

  8. Marinho-Neto FA, Claudiano GS, Yunis-Aguinaga J,Cueva-Quiroz VA, Kobashigawa KK, Cruz NR, et al.Morphological, microbiological and ultrastructuralaspects of sepsis by Aeromonas hydrophila in Piaractusmesopotamicus. PLoS One. 2019 Sep 20;14(9):e0222626. https://doi.org/10.1371/journal.pone.0222626

  9. Hossain S, De Silva BC, Dahanayake PS, Heo GJ.Characterization of virulence properties and multidrugresistance profiles in motile Aeromonas spp.isolated from zebrafish (Danio rerio). Letters in appliedmicrobiology. 2018 Dec;67(6):598-605. https://doi.org/10.1111/lam.13075

  10. Deng Y, Wu Y, Jiang L, Tan A, Zhang R, Luo L.Multi-drug resistance mediated by class 1 integrons inAeromonas isolated from farmed freshwater animals.Frontiers in microbiology. 2016 Jun 15; 7:935. https://doi.org/10.3389/fmicb.2016.00935

  11. Rasmussen-Ivey CR, Figueras MJ, McGarey D, LilesMR. Virulence factors of Aeromonas hydrophila: in thewake of reclassification. Frontiers in Microbiology. 2016Aug 25; 7:1337.

  12. Mendoza-Barberá E, Merino S, Tomás J. SurfaceGlucan Structures in Aeromonas spp. Marine Drugs.2021 Nov 22;19(11):649. https://doi.org/10.3389/fmicb.2016.01337

  13. Masuyer G. Crystal structure of exotoxin a fromaeromonas pathogenic species. Toxins. 2020 Jun15;12(6):397. https://doi.org/10.3390/toxins12060397

  14. Wickramanayake MV, Dahanayake PS, Hossain S, HeoGJ. Antimicrobial resistance of pathogenic Aeromonasspp. isolated from marketed Pacific abalone (Haliotisdiscus hannai) in Korea. Journal of applied microbiology.2020 Feb;128(2):606-17. https://doi.org/10.1111/jam.14485

  15. Khor WC, Puah SM, Koh TH, Tan JA, Puthucheary SD,Chua KH. Comparison of clinical isolates of Aeromonasfrom Singapore and Malaysia with regard to molecularidentification, virulence, and antimicrobial profiles.Microbial Drug Resistance. 2018 May 1;24(4):469-78.https://doi.org/10.1089/mdr.2017.0083

  16. Barger PC, Liles MR, Newton JC. Type II secretion isessential for virulence of the emerging fish pathogen,hypervirulent Aeromonas hydrophila. Frontiers inveterinary science. 2020 Sep 25; 7:574113. https://doi.org/10.3389/fvets.2020.574113

  17. Shuang ME, Wang YL, LIU CG, Jing YA, Min YU,et al. Genetic diversity, antimicrobial resistance, andvirulence genes of Aeromonas isolates from clinicalpatients, tap water systems, and food. Biomedical andEnvironmental Sciences. 2020 Jun 1;33(6):385-95.https://doi.org/10.3967/bes2020.053

  18. Sidhu JP, Gupta VV, Stange C, Ho J, Harris N, Barry K,et al. Prevalence of antibiotic resistance and virulencegenes in the biofilms from an aquifer recharged withstormwater. Water Research. 2020 Oct 15; 185:116269.https://doi.org/10.1016/j.watres.2020.116269

  19. Origgi FC, Benedicenti O, Segner H, Sattler U, Wahli T,Frey J. Aeromonas salmonicida type III secretion systemeffectors-mediated immune suppression in rainbow trout(Oncorhynchus mykiss). Fish & shellfish immunology.

  20. 2017 Jan 1;60:334-45. https://doi.org/10.1016/j.fsi.2016.12.00620. Del Castillo CS, Hikima JI, Jang HB, Nho SW, Jung TS,Wongtavatchai J, et al. Comparative sequence analysisof a multidrug-resistant plasmid from Aeromonashydrophila. Antimicrobial agents and chemotherapy.2013 Jan;57(1):120-9. https://doi.org/10.1128/AAC.01239-12

  21. Avila-Calderón ED, Otero-Olarra JE, Flores-Romo L,Peralta H, Aguilera-Arreola MG, Morales-García MR,Calderón-Amador J, Medina-Chávez O, Donis-MaturanoL, Ruiz-Palma MD, Contreras-Rodríguez A. The outermembrane vesicles of Aeromonas hydrophila ATCC®7966TM: a proteomic analysis and effect on host cells.Frontiers in Microbiology. 2018 Nov 16; 9:2765. https://doi.org/10.3389/fmicb.2018.02765

  22. Thomas SG, Abajorga M, Glover MA, Wengert PC,Parthasarathy A, Savka MA, et al. Aeromonas hydrophilaRIT668 and Citrobacter portucalensis RIT669—Potential Zoonotic Pathogens Isolated from SpottedTurtles. Microorganisms. 2020 Nov 17;8(11):1805.https://doi.org/10.3390/microorganisms8111805

  23. Dias C, Borges A, Saavedra MJ, Simões M. Biofilmformation and multidrug-resistant Aeromonas spp. fromwild animals. Journal of global antimicrobial resistance.2018 Mar 1; 12:227-34. https://doi.org/10.1016/j.jgar.2017.09.010

  24. Ali F, Yao Z, Li W, Sun L, Lin W, Lin X. In-silicoprediction and modeling of the quorum sensing LuxSprotein and inhibition of AI-2 biosynthesis in Aeromonashydrophila. Molecules. 2018 Oct 12;23(10):2627.https://doi.org/10.3390/molecules23102627

  25. Blöcher R, Rodarte Ramírez A, Castro-EscarpulliG, Curiel-Quesada E, Reyes-Arellano A. Design,Synthesis, and Evaluation of Alkyl-Quinoxalin-2 (1 H)-One Derivatives as Anti-Quorum Sensing Molecules,Inhibiting Biofilm Formation in Aeromonas caviaeSch3. Molecules. 2018 Nov 24;23(12):3075. https://doi.org/10.3390/molecules23123075

  26. Jin L, Chen Y, Yang W, Qiao Z, Zhang X. Completegenome sequence of fish-pathogenic Aeromonashydrophila HX-3 and a comparative analysis: insightsinto virulence factors and quorum sensing. Scientificreports. 2020 Sep 23;10(1):1-5. https://doi.org/10.1038/s41598-020-72484-8

  27. Adamczuk M, Dziewit L. Genome-based insights intothe resistome and mobilome of multidrug-resistantAeromonas sp. ARM81 isolated from wastewater.Archives of microbiology. 2017 Jan;199(1):177-83.https://doi.org/10.1007/s00203-016-1285-6

  28. Shi Y, Tian Z, Gillings MR, Zhang Y, Zhang H, Huyan J,et al. Novel transposon Tn 6433 variants accelerate thedissemination of tet (E) in Aeromonas in an aerobic biofilmreactor under oxytetracycline stresses. EnvironmentalScience & Technology. 2020 May 8;54(11):6781-91.https://doi.org/10.1021/acs.est.0c01272

  29. Segatore B, Piccirilli A, Setacci D, Cicolani B, DiSabatino A, Miccoli FP, et al. First Identification ofβ-Lactamases in Antibiotic-Resistant Escherichia coli,Citrobacter freundii, and Aeromonas spp. Isolated inStream Macroinvertebrates in a Central Italian Region.Microbial Drug Resistance. 2020 Aug 1;26(8):976-81.https://doi.org/10.1089/mdr.2019.0258

  30. Hayatgheib N, Calvez S, Fournel C, Pineau L, PouliquenH, Moreau E. Antimicrobial susceptibility profiles andresistance genes in genus Aeromonas spp. isolated fromthe environment and rainbow trout of two fish farms inFrance. Microorganisms. 2021 Jun 1;9(6):1201. https://doi.org/10.3390/microorganisms9061201

  31. Zdanowicz M, Mudryk ZJ, Perliński P. Abundanceand antibiotic resistance of Aeromonas isolated fromthe water of three carp ponds. Veterinary ResearchCommunications. 2020 Feb; 44(1):9-18. https://doi.org/10.1007/s11259-020-09768-x

  32. Bush K, Bradford PA. Epidemiology of β-lactamaseproducingpathogens. Clinical microbiology reviews.2020 Feb 26;33(2): e00047-19. https://doi.org/10.1128/CMR.00047-19

  33. Vega-Sánchez V, Latif-Eugenín F, Soriano-Vargas E,Beaz-Hidalgo R, Figueras MJ, Aguilera-Arreola MG, etal. Re-identification of Aeromonas isolates from rainbowtrout and incidence of class 1 integron and β-lactamasegenes. Veterinary microbiology. 2014 Aug 27;172(3-4):528-33. https://doi.org/10.1016/j.vetmic.2014.06.012

  34. Nwaiwu O, Aduba CC. An in silico analysis of acquiredantimicrobial resistance genes in Aeromonas plasmids.AIMS microbiology. 2020;6(1):75. doi: 10.3934/microbiol.2020005

  35. Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plantderivedsecondary metabolites as the main source of effluxpump inhibitors and methods for identification. Journalof pharmaceutical analysis. 2020 Aug 1;10(4):277-90.https://doi.org/10.1016/j.jpha.2019.11.002

  36. Hernould M, Gagné S, Fournier M, Quentin C, ArpinC. Role of the AheABC efflux pump in Aeromonashydrophila intrinsic multidrug resistance. Antimicrobialagents and chemotherapy. 2008 Apr;52(4):1559-63.https://doi.org/10.1128/AAC.01052-07

  37. Yu J, Ramanathan S, Chen L, Zeng F, Li X, Zhao Y,et al. Comparative transcriptomic analysis revealsthe molecular mechanisms related to oxytetracyclineresistancein strains of Aeromonas hydrophila.Aquaculture Reports. 2021 Nov 1; 21:100812. https://doi.org/10.1016/j.aqrep.2021.100812

  38. Lin X, Lin L, Yao Z, Li W, Sun L, Zhang D, et al. Anintegrated quantitative and targeted proteomics revealsfitness mechanisms of Aeromonas hydrophila underoxytetracycline stress. Journal of proteome research.2015 Mar 6;14(3):1515-25. https://doi.org/10.1021/pr501188g

  39. Yao Z, Sun L, Wang Y, Lin L, Guo Z, Li D, et al. Quantitativeproteomics reveals antibiotics resistance function ofouter membrane proteins in Aeromonas hydrophila.Frontiers in cellular and infection microbiology. 2018Nov 6; 8:390. https://doi.org/10.3389/fcimb.2018.00390

  40. Wang D, Li H, Ma X, Tang Y, Tang H, Huang D, etal. Hfq Regulates Efflux Pump Expression and PurineMetabolic Pathway to Increase Trimethoprim Resistancein Aeromonas veronii. Frontiers in Microbiology.2021;12. doi: 10.3389/fmicb.2021.742114

  41. Zhu W, Zhou S, Chu W. Comparative proteomicanalysis of sensitive and multi-drug resistant Aeromonashydrophila isolated from diseased fish. Microbialpathogenesis. 2020 Feb 1;139: 103930. https://doi.org/10.1016/j.micpath.2019.103930

  42. Tang L, Huang J, She J, Zhao K, Zhou Y. Co-Occurrenceof the blaKPC-2 and Mcr-3.3 Gene in Aeromonascaviae SCAc2001 Isolated from Patients with DiarrhealDisease. Infection and Drug Resistance. 2020; 13:1527.doi: 10.2147/IDR.S245553

  43. Yu W, Li D, Li H, Tang Y, Tang H, Ma X, et al. Absenceof tmRNA increases the persistence to Cefotaximeand the intercellular accumulation of metaboliteGlcNAc in Aeromonas veronii. Frontiers in cellular andinfection microbiology. 2020 Feb 28; 10:44. https://doi.org/10.3389/fcimb.2020.00044

  44. Fu Y, Zhang L, Wang G, Lin Y, Ramanathan S, YangG, et al. The LysR-type transcriptional regulator YeeYplays important roles in the regulatory of furazolidoneresistance in Aeromonas hydrophila. Frontiers inMicrobiology. 2020 Sep 9; 11:577376. https://doi.org/10.3389/fmicb.2020.577376

  45. Li W, Ali F, Cai Q, Yao Z, Sun L, Lin W, et al. Quantitativeproteomic analysis reveals that chemotaxis is involvedin chlortetracycline resistance of Aeromonas hydrophila.Journal of proteomics. 2018 Feb 10; 172:143-51. https://doi.org/10.1016/j.jprot.2017.09.011

  46. Lo CC, Liao WY, Chou MC, Wu YY, Yeh TH, Lo HR.Overexpression of Resistance-Nodulation-DivisionEfflux Pump Genes Contributes to Multidrug Resistancein Aeromonas hydrophila Clinical Isolates. MicrobialDrug Resistance. 2022 Feb 1; 28(2):153-60. https://doi.org/10.1089/mdr.2021.0084

  47. Dong Y, Li Q, Geng J, Cao Q, Zhao D, Jiang M, et al.The TonB system in Aeromonas hydrophila NJ-35 isessential for MacA2B2 efflux pump-mediated macrolideresistance. Veterinary research. 2021 Dec;52(1):1-0.https://doi.org/10.1186/s13567-021-00934-w

  48. Lin L, Wang Y, Srinivasan R, Zhang L, Song H, Song Q,Wang G, Lin X. Quantitative Proteomics Reveals Thatthe Protein Components of Outer Membrane Vesicles(OMVs) in Aeromonas hydrophila Play ProtectiveRoles in Antibiotic Resistance. Journal of ProteomeResearch. 2022 Jun 8. https://doi.org/10.1021/acs.jproteome.2c00114

  49. Tran F, Boedicker JQ. Genetic cargo and bacterialspecies set the rate of vesicle-mediated horizontal genetransfer. Scientific reports. 2017 Aug 18;7(1):1-0. https://doi.org/10.1038/s41598-017-07447-7

  50. Grilo ML, Amaro G, Chambel L, Marques CS,Marques TA, Gil F, Sousa-Santos C, Robalo JI,Oliveira M. Aeromonas spp. Prevalence, Virulence,and Antimicrobial Resistance in an Ex Situ Programfor Threatened Freshwater Fish—A Pilot Study withProtective Measures. Animals. 2022 Feb 11;12(4):436.https://doi.org/10.3390/ani12040436

  51. Onuoha, S. C. “Occurrence and Antibiotic Susceptibilityof Aeromonas species from Piggery Farms in EbonyiState, Nigeria Onuoha, S. C*, Eronmosele, BO, 2 Okoh,FN, 2 Okafor, CO, 2 Onwere, CC 2 and Ovia, KN 2.”Nigerian Journal of Microbiology (2022). https://orcid.org/ 0000-0002-6076-3910

  52. Figueira V, Vaz-Moreira I, Silva M, Manaia CM.Diversity and antibiotic resistance of Aeromonas spp.in drinking and waste water treatment plants. Waterresearch. 2011 Nov 1;45(17):5599-611. https://doi.org/10.1016/j.watres.2011.08.021

  53. Uechi K, Tada T, Sawachi Y, Hishinuma T, TakaesuR, Nakama M, et al. A carbapenem-resistant clinicalisolate of Aeromonas hydrophila in Japan harbouring anacquired gene encoding GES-24 β-lactamase. Journalof Medical Microbiology. 2018 Nov 1;67(11):1535-7.https://doi.org/10.1099/jmm.0.000842

  54. Woo SJ, Kim MS, Jeong MG, Do MY, Hwang SD, KimWJ. Establishment of Epidemiological Cut-Off Valuesand the Distribution of Resistance Genes in Aeromonashydrophila and Aeromonas veronii Isolated from AquaticAnimals. Antibiotics. 2022 Mar 5;11(3):343. https://doi.org/10.3390/antibiotics11030343

  55. Ragupathi NK, Sethuvel DP, Anandan S, MuruganD, Asokan K, Mohan RG, et al. First hybrid completegenome of Aeromonas veronii reveals chromosomemediatednovel structural variant mcr-3.30 from ahuman clinical sample. Access microbiology. 2020;2(4).doi: 10.1099/acmi.0.000103

  56. Jagoda SD, Honein K, Arulkanthan A, Ushio H,Asakawa S. Genome sequencing and annotation ofAeromonas veronii strain Ae52, a multidrug-resistantisolate from septicaemic gold fish (Carassius auratus) inSri Lanka. Genomics Data. 2017 Mar 1; 11:46-8. https://doi.org/10.1016/j.gdata.2016.11.011

  57. Prediger KD, Dallagassa CB, Moriel B, Vizzotto BS,Volanski W, Souza EM, et al. Virulence characteristicsand antimicrobial resistance of Aeromonas veroniibiovar sobria 312M, a clinical isolate. Brazilian Journalof Microbiology. 2020 Jun;51(2):511-8. https://doi.org/10.1007/s42770-019-00180-5

  58. Vincent AT, Trudel MV, Paquet VE, Boyle B, TanakaKH, Dallaire-Dufresne S, et al. Detection of variantsof the pRAS3, pAB5S9, and pSN254 plasmids inAeromonas salmonicida subsp. salmonicida: multidrugresistance, interspecies exchanges, and plasmidreshaping. Antimicrobial agents and chemotherapy.2014 Dec;58(12):7367-74. https://doi.org/10.1128/AAC.03730-14

  59. Massicotte MA, Vincent AT, Schneider A, Paquet VE,Frenette M, Charette SJ. One Aeromonas salmonicidasubsp. salmonicida isolate with a pAsa5 variant bearingantibiotic resistance and a pRAS3 variant making a linkwith a swine pathogen. Science of the Total Environment.2019 Nov 10; 690:313-20. https://doi.org/10.1016/j.scitotenv.2019.06.456

  60. Dahanayake PS, Hossain S, Wickramanayake MV,Heo GJ. Antibiotic and heavy metal resistance genes inAeromonas spp. isolated from marketed Manila Clam(Ruditapes philippinarum) in Korea. Journal of appliedmicrobiology. 2019 Sep;127(3):941-52. https://doi.org/10.1111/jam.14355

  61. Bello-López JM, Sánchez-Garibay C, Ibáñez-CervantesG, León-García G, Gonzalez-Avila LU, Hernández-Cortez C, et al. Genetic and phenotypic determinantsof resistance to antibiotics in Aeromonas spp., strainsisolated from pediatric patients. The Journal of Infectionin Developing Countries. 2020 Oct 31;14(10):1146-54.https://doi.org/10.3855/jidc.12966

  62. Zhou Y, Yu L, Nan Z, Zhang P, Kan B, Yan D, et al.Taxonomy, virulence genes and antimicrobial resistanceof Aeromonas isolated from extra-intestinal and intestinalinfections. BMC infectious diseases. 2019 Dec;19(1):1-9. https://doi.org/10.1186/s12879-019-3766-0

  63. Vincent AT, Intertaglia L, Loyer V, Paquet VE, AdouaneÉ, Martin P, Bérard C, Lami R, Charette SJ. AsaGEI2d:a new variant of a genomic island identified in a groupof Aeromonas salmonicida subsp. salmonicida isolatedfrom France, which bears the pAsa7 plasmid. FEMSMicrobiology Letters. 2021 Mar;368(4): fnab021.https://doi.org/10.1093/femsle/fnab021

  64. Desbois AP, Cook KJ, Buba E. Antibiotics modulatebiofilm formation in fish pathogenic isolates of atypicalAeromonas salmonicida. Journal of fish diseases. 2020Nov;43(11):1373-9. https://doi.org/10.1111/jfd.13232

  65. Hoa TT, Nakayama T, Huyen HM, Harada K, HinenoyaA, Phuong NT, et al. Extended‐spectrum beta‐lactamaseproducingEscherichia coli harbouring sul and mcr‐1genes isolates from fish gut contents in the MekongDelta, Vietnam. Letters in applied microbiology. 2020Jul;71(1):78-85. https://doi.org/10.1111/lam.13222

  66. Grilo ML, Pereira A, Sousa-Santos C, Robalo JI, OliveiraM. Climatic Alterations Influence Bacterial Growth,Biofilm Production and Antimicrobial Resistance Profilesin Aeromonas spp. Antibiotics. 2021 Aug 20;10(8):1008.https://doi.org/10.3390/antibiotics10081008

  67. MacFadden DR, McGough SF, Fisman D, Santillana M,Brownstein JS. Antibiotic resistance increases with localtemperature. Nature Climate Change. 2018 Jun;8(6):510-4. https://doi.org/10.1038/s41558-018-0161-6

  68. Dong Y, Geng J, Liu J, Pang M, Awan F, Lu C, et al.Roles of three TonB systems in the iron utilization andvirulence of the Aeromonas hydrophila Chinese epidemicstrain NJ-35. Applied microbiology and biotechnology.2019 May;103(10):4203-15. https://doi.org/10.1007/s00253-019-09757-4

  69. Trudel MV, Vincent AT, Attéré SA, Labbé M, Derome N,Culley AI, et al. Diversity of antibiotic-resistance genesin Canadian isolates of Aeromonas salmonicida subsp.salmonicida: dominance of pSN254b and discovery ofpAsa8. Scientific reports. 2016 Oct 18;6(1):1-0. https://doi.org/10.1038/srep35617




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2023;34

ARTíCULOS SIMILARES

CARGANDO ...