medigraphic.com
ENGLISH

Revista Mexicana de Medicina Forense y Ciencias de la Salud

ISSN 2448-8011 (Digital)
Revista de Divulgación del INSTITUTO DE MEDICINA FORENSE de la UNIVERSIDAD VERACRUZANA
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

<< Anterior Siguiente >>

Rev Mex Med Forense 2023; 8 (1)


Mecanismos moleculares de infección del virus de la rabia a las neuronas

Vichi-Ramírez MM, Soriano-Correa C, Merino-Amador P, Barrientos-Salcedo C
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 43
Paginas: 178-193
Archivo PDF: 542.22 Kb.


PALABRAS CLAVE

Virus rabia, Conducta agresiva, vía serotoninérgica, sistema límbico.

RESUMEN

El Lyssavirus rabies virus, comúnmente llamado virus de la rabia, es altamente neurotrópico y letal en mamíferos. Causa la enfermedad de la Rabia, la cual es importante en la salud pública. Sin embargo, existen escasos artículos que describen las bases neurales del comportamiento agresivo en los infectados con el virus de la rabia, que incluyen alteraciones en la neurotransmisión serotoninérgica, colinérgica, GABAérgica y canales iónicos de calcio dependientes de voltaje. En esta revisión se reúne información especializada sobre los mecanismos de infección al sistema nervioso y su relación con la conducta agresiva inducida por el virus de la rabia.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Albertini A.A.V., Ruigrok R.W.H., Blondel D. (2011). Rabies virus transcription and replication. Advances in Virus Research, 79, 1–22. doi:10.1016/B978-0-12-387040-7.00001-9

  2. Al-kassab-Córdova A., Cornejo-Venegas G., Ortiz-Alfaro C. (2019). La rabia: Aspectos epidemiológicos, mecanismos moleculares de la infección y prevención. Revista Experiencia En Medicina Del Hospital Regional Lambayeque, 5(3), 150–157. doi:10.37065/rem.v5i3.309

  3. Berger M., Gray J.A., Roth B.L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355–366. doi:10.1146/annurev.med.60.042307.110802

  4. Cremer H., Lange R., Christoph A., Plomann M., Vopper G., Roes J., Scheff S. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature, 367(6462), 455–459. doi:10.1038/367455a0

  5. Davis B.M., Rall G.F., Schnell M.J. (2015). Everything you always wanted to know about rabies virus (but were afraid to ask). Annual Review of Virology, 2(1), 451–471. doi:10.1146/annurev-virology-100114-055157

  6. Farahtaj F., Alizadeh L., Gholami A., Tahamtan A., Shirian S., Fazeli M., Ghaemi, A. (2019). Natural infection with rabies virus: A histopathological and immunohistochemical study of human brains. Osong Public Health and Research Perspectives, 10(1), 6–11. doi:10.24171/j.phrp.2019.10.1.03

  7. Fisher C.R., Streicker D.G., Schnell M.J. (2018). The spread and evolution of rabies virus: conquering new frontiers. Nature Reviews. Microbiology, 16(4), 241–255. doi:10.1038/nrmicro.2018.11

  8. Fooks A.R., Cliquet F., Finke S., Freuling C., Hemachudha T., Mani R.S., Banyard A.C. (2017). Rabies. Nature Reviews. Disease Primers, 3, 17091. doi:10.1038/nrdp.2017.91

  9. Holanda Duarte N.F., Alencar C.H., Pires Neto R. da J., Moreno J. de O., Araújo Melo I.M.L., Duarte B.H., Heukelbach J. (2021). Integration of human rabies surveillance and preventive measures in the State of Ceará, Northeast Brazil. One Health & Implementation Research. doi:10.20517/ohir.2021.02

  10. Foster J.E., Mendoza J.A., Seetahal J. (2018) Viruses as Pathogens: Animal Viruses, With Emphasis on Human Viruses. En: P. Tennant, G. Fermin, J.E. Foster (Eds.), Viruses: Molecular Biology, Host Interactions and Applications to Biotechnology (pp. 157–87). San Diego, CA, USA: Elsevier.

  11. Hueffer K., Khatri S., Rideout S., Harris M.B., Papke R.L., Stokes C., Schulte M.K. (2017). Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Scientific Reports, 7(1), 12818. doi:10.1038/s41598-017-12726-4

  12. Iwata M., Unno T., Minamoto N., Ohashi H., Komori S. (2000). Rabies virus infection prevents the modulation by α2-adrenoceptors, but not muscarinic receptors, of Ca2+ channels in NG108-15 cells. European Journal of Pharmacology, 404(1–2), 79–88. doi:10.1016/s0014-2999(00)00621-x

  13. Jackson AC. (2020). Pathogenesis. En AC Jackson (Ed). Rabies: scientific basis of the disease and its management pp. 303–45. San Diego, CA, USA: Elsevier.

  14. Jackson AC. (2017). Rabies virus. En C. Coen, R. Dunbar, J. Morris, G. Goodwin, E. Mann, M. Hussein, J. Stein, E.T. Rolls, J. Taylor, V. Walsh, J. Stein (Eds.), The Curated Reference Collection in Neuroscience and Biobehavioral Psychology (pp. 1027–30). Oxford, UK: Elsevier.

  15. Jackson A.C. (2016). Diabolical effects of rabies encephalitis. Journal of Neurovirology, 22(1), 8–13. doi:10.1007/s13365-015-0351-1

  16. Jackson A.C., Kammouni W., Zherebitskaya E., Fernyhough P. (2010). Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. Journal of Virology, 84(9), 4697–4705. doi:10.1128/JVI.02654-09

  17. Jonsson Fagerlund, M., Krupp, J., & Dabrowski, M. A. (2016). Propofol and AZD3043 inhibit adult muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Pharmaceuticals (Basel, Switzerland), 9(1), 8. doi:10.3390/ph9010008

  18. Kalin N.H. (1999). Primate models to understand human aggression. The Journal of Clinical Psychiatry, 60 Suppl 15, 29–32.

  19. Ladogana A., Bouzamondo E., Pocchiari M., Tsiang H. (1994). Modification of tritiated gamma-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. The Journal of General Virology, 75 (Pt 3) (3), 623–627. doi:10.1099/0022-1317-75-3-623

  20. Lentz T.L., Burrage T.G., Smith A.L., Crick J., Tignor G.H. (1982). Is the acetylcholine receptor a rabies virus receptor? Science, 215(4529), 182–184. doi:10.1126/science.7053569

  21. Li L., Jin H., Wang H., Cao Z., Feng N., Wang J., Xia X. (2017). Autophagy is highly targeted among host comparative proteomes during infection with different virulent RABV strains. Oncotarget, 8(13), 21336–21350. doi:10.18632/oncotarget.15184

  22. Lippi G., Cervellin G. (2021). Updates on Rabies virus disease: is evolution toward “Zombie virus” a tangible threat? Acta Bio-Medica : Atenei Parmensis, 92(1), e2021045. doi:10.23750/abm.v92i1.9153

  23. Ludlow M., Kortekaas J., Herden C., Hoffmann B., Tappe D., Trebst C., Osterhaus A.D.M.E. (2016). Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathologica, 131(2), 159–184. doi:10.1007/s00401-015-1511-3

  24. Miller K.D., Schnell M.J., Rall G.F. (2016). Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nature Reviews. Neuroscience, 17(12), 766–776. doi:10.1038/nrn.2016.140

  25. Ogino T., Green T.J. (2019). Transcriptional control and mRNA capping by the GDP polyribonucleotidyltransferase domain of the rabies virus large protein. Viruses, 11(6), 504. doi:10.3390/v11060504

  26. Okumura A., Harty R.N. (2011). Rabies virus assembly and budding. Advances in Virus Research, 79, 23–32. doi:10.1016/B978-0-12-387040-7.00002-0

  27. Oliveira R.N., Freire C.C., Iamarino A., Zanotto P.M., Pessoa R., Sanabani S.S., Brandão P.E. (2020). Rabies virus diversification in aerial and terrestrial mammals. Genetics and Molecular Biology, 43(3), e20190370. doi:10.1590/1678-4685-GMB-2019-0370

  28. Ortega-Escobar J., Alcázar-Córcoles M.Á. (2016). Neurobiología de la agresión y la violencia. Anuario de psicología jurídica, 26(1), 60–69. doi:10.1016/j.apj.2016.03.001

  29. Pan American Health Organization (PAHO). (2018). WHO expert consultation on rabies: third report. Recuperado de https://www.paho.org/en/documents/who-expert-consultation-rabies-third-report

  30. Phoolcharoen W., Prehaud C., van Dolleweerd C.J., Both L., da Costa A., Lafon M., Ma J.K.-C. (2017). Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across anin celluloblood-brain barrier device. Plant Biotechnology Journal, 15(10), 1331–1339. doi:10.1111/pbi.12719

  31. Piccinotti S., Kirchhausen T., Whelan S.P.J. (2013). Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. Journal of Virology, 87(21), 11637–11647. doi:10.1128/JVI.01648-13

  32. World Health Organization (WHO). (2021). Rabies. Recuperado de https://www.who.int/news-room/fact-sheets/detail/rabies

  33. Rajagopalan A., Jinu K.V., Sailesh K.S., Mishra S., Reddy U.K., Mukkadan J.K. (2017). Understanding the links between vestibular and limbic systems regulating emotions. Journal of Natural Science, Biology, and Medicine, 8(1), 11–15. doi:10.4103/0976-9668.198350

  34. Riedel C., Hennrich A.A., Conzelmann K.-K. (2020). Components and architecture of the Rhabdovirus ribonucleoprotein complex. Viruses, 12(9), 959. doi:10.3390/v12090959

  35. Riedel C., Vasishtan D., Pražák V., Ghanem A., Conzelmann K.-K., Rümenapf T. (2019). Cryo EM structure of the rabies virus ribonucleoprotein complex. Scientific Reports, 9(1), 9639. doi:10.1038/s41598-019-46126-7

  36. Shuangshoti S., Thorner P.S., Teerapakpinyo C., Thepa N., Phukpattaranont P., Intarut N., Hemachudha T. (2016). Intracellular spread of rabies virus is reduced in the paralytic form of canine rabies compared to the furious form. PLoS Neglected Tropical Diseases, 10(6), e0004748. doi:10.1371/journal.pntd.0004748

  37. Siever L.J. (2008). Neurobiology of aggression and violence. The American Journal of Psychiatry, 165(4), 429–442. doi:10.1176/appi.ajp.2008.07111774

  38. Singh R., Singh K.P., Cherian S., Saminathan M., Kapoor S., Manjunatha Reddy G.B., Dhama K. (2017). Rabies – epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. The Veterinary Quarterly,37(1), 212–251. doi:10.1080/01652176.2017.1343516

  39. Smart N.L., Charlton K.M. (1992). The distribution of Challenge virus standard rabies virus versus skunk street rabies virus in the brains of experimentally infected rabid skunks. Acta Neuropathologica, 84(5), 501–508. doi:10.1007/bf00304469

  40. Thoulouze M.I., Lafage M., Schachner M., Hartmann U., Cremer H., Lafon M. (1998). The neural cell adhesion molecule is a receptor for rabies virus. Journal of Virology, 72(9), 7181–7190. doi:10.1128/JVI.72.9.7181-7190.1998

  41. Tuffereau C., Bénéjean J., Blondel D., Kieffer B., Flamand A. (1998). Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. The EMBO Journal, 17(24), 7250–7259. doi:10.1093/emboj/17.24.7250

  42. Walker P.J., Blasdell K.R., Calisher C.H., Dietzgen R.G., Kondo H., Kurath G. (2018). ICTV virus taxonomy profile: Rhabdoviridae. The Journal of General Virology, 99(4), 447–448. doi:10.1099/jgv.0.001020

  43. Wunner WH, Conzelmann K-K. (2020). Rabies: scientific basis of the disease and its management. En AC Jackson (Ed). Rabies virus (pp. 17–60). San Diego, CA, USA: Elsevier.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Med Forense. 2023;8

ARTíCULOS SIMILARES

CARGANDO ...