medigraphic.com
ENGLISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 3

<< Anterior Siguiente >>

Rev Cubana Plant Med 2021; 26 (3)


Efecto hepatoprotector de hojas de Morus nigra L. sobre daño hepático en ratas inducido por acetaminofeno

Gonzales CEG, Arce RFA, Magaño CMN, Ramírez RSA, Paz-Aliaga A
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 52
Paginas:
Archivo PDF: 467.58 Kb.


PALABRAS CLAVE

alanina aminotransferasa, aspartato aminotransferasa, hepatoprotector, histopatología.

RESUMEN

Introducción: El acetaminofeno es uno de los fármacos analgésicos y antipiréticos más utilizados. Se caracteriza por los efectos hepatotóxicos que produce luego de una administración prolongada por la formación excesiva de N-acetil-p-benzoquinoneimina intermedia, producto del metabolismo en fase I. Las hojas de Morus nigra L. presentan actividad terapéutica debido a su composición química y capacidad antioxidante.
Objetivos: Evaluar el efecto hepatoprotector del extracto hidroalcohólico de Morus nigra L. en ratas con daño hepático inducido por acetaminofeno.
Métodos: Veinte ratas (Rattus norvergicus albinus) se dividieron en cuatro grupos: control, acetaminofeno (250 mg/kg) como grupo control de hepatotoxicidad, acetaminofeno + silimarina (100 mg/kg) y acetaminofeno + Morus nigra L. (250 mg/kg). Las enzimas de función hepática ALT y AST fueron medidas los días 1, 6, 12 y 21. Además, se realizó un estudio histopatológico en secciones de hígado.
Resultados: El acetaminofeno aumentó los niveles de ALT y AST, lo cuales se mantuvieron elevados luego de la administración de agua destilada como placebo hasta el día 21. La silimarina y el extracto de hojas Morus nigra L disminuyeron los niveles de ALT y AST hasta niveles similares del control (basal).
Conclusiones: Los resultados del presente estudio demostraron que la administración de Morus nigra L mejora la lesión hepática producida por el acetaminofeno con efecto significativamente similar al de la silimarina.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2014;70(1):151-71. DOI: https://doi.org/10.1016/j.jhep.2018.09.014

  2. Sun J, Zhou B, Tang C, Gou Y, Chen H, Wang Y, et al. Characterization, antioxidant activity and hepatoprotective effect of purple sweetpotato polysaccharides. Internat J Biolog Macromolec. 2018;115:69-76. DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.033

  3. Stine JG, Lewis JH. Hepatotoxicity of antibiotics: A Review and update for the Clinician. Clinic Liver Dis. 2013;17(4):609-42. DOI: https://doi.org/10.1016/j.cld.2013.07.008

  4. Parvez MK, Al-Dosari MS, Arbab AH, Niyazi S. The in vitro and in vivo antihepatotoxic, antihepatitis B virus and hepatic CYP450 modulating potential of Cyperus rotundus. Saud Pharma J. 2019;27(4):558-64. DOI: https://doi.org/10.1016/j.jsps.2019.02.003

  5. Zhang X, Zhang R, Yang H, Xiang Q, Jiang Q, He Q, et al. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda. Chem Biolog Interact. 2016;254:45-53. DOI: https://doi.org/10.1016/j.cbi.2016.05.030

  6. Luyendyk JP, Ganey PE, Fullerton A, Roth RA. 2.13 Inflammation and Hepatotoxicity. In: CA McQueen (Ed.). 3rd. Ed. Comprehensive toxicology. 2020:324-45. DOI: https://doi.org/10.1016/B978-0-12-801238-3.95664-2

  7. Rathee D, Kamboj A, Sachdev RK, Sidhu S. Hepatoprotective effect of Aegle marmelos augmented with piperine co-administration in paracetamol model. Rev Brasil de Farmacog. 2018;28(1):65-72. DOI: https://doi.org/10.1016/j.bjp.2017.11.003

  8. Ramachandran A, Jaeschke H. Acetaminophen hepatotoxicity: A mitochondrial perspective. Advan Pharmacol. 2019;85:195-219. DOI: https://doi.org/10.1016/bs.apha.2019.01.007

  9. Coen M. Metabolic phenotyping applied to preclinical and clinical studies of acetaminophen metabolism and hepatotoxicity. Drug Metabol Rev. 2015;47(1):29-44. DOI: https://doi.org/10.3109/03602532.2014.982865

  10. Mohammed NEM, Messiha BAS, Abo-Saif AA. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saud Pharma J. 2016;24(6):635-44. DOI: https://doi.org/10.1016/j.jsps.2015.04.004

  11. Ogilvie JD, Rieder MJ, Lim R. Acetaminophen overdose in children. CMAJ. 2012;184(13):1492-6. DOI: https://doi.org/10.1503/cmaj.111338

  12. Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Research. 2006;124(5):491-504. PMID: 17213517

  13. Vivekanandan L, Sheik H, Singaravel S, Thangavel S. Ameliorative effect of silymarin against linezolid-induced hepatotoxicity in methicillin-resistant Staphylococcus aureus (MRSA) infected Wistar rats. Biomed Pharmaco. 2018;108:1303-12. DOI: https://doi.org/10.1016/j.biopha.2018.09.133

  14. Wei H, Zhu JJ, Liu XQ, Feng WH, Wang ZM, Yan LH. Review of bioactive compounds from root barks of Morus plants (Sang-Bai-Pi) and their pharmacological effects. Cogent Chem. 2016;2(1):1212320. DOI: https://doi.org/10.1080/23312009.2016.1212320

  15. Dalmagro AP, Camargo A, Zeni ALB. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metabol Brain Disease. 2017;32(6):1963-73. DOI: https://doi.org/10.1007/s11011-017-0089-y

  16. Lim SH, Choi CI. Pharmacological Properties of Morus nigra L. (black mulberry) as a promising nutraceutical resource. Nutrients. 2019;11(2):437. DOI: https://doi.org/10.3390/nu11020437

  17. Mascarello A, Orbem Menegatti AC, Calcaterra A, Martins PGA, Chiaradia-Delatorre LD, D’Acquarica I, et al. Naturally occurring diels-alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Europ J Med Chem. 2018;144:277-88. DOI: https://doi.org/10.1016/j.ejmech.2017.11.087

  18. Zhou R, Li D, Kou Q, Jiao Z, Ning Z. Evaluation of antiinflammatory, antimicrobial and wound healing activity of Morus nigra. South Afric J Bot. 2019;124:540-5. DOI: https://doi.org/10.1016/j.sajb.2019.06.021

  19. Hago S, Mahrous EA, Moawad M, Abdel-Wahab S, Abdel-Sattar E. Evaluation of antidiabetic activity of Morus nigra L. and Bauhinia variegata L. leaves as Egyptian remedies used for the treatment of diabetes. Nat Prod Research. 2019;1-7. DOI: https://doi.org/10.1080/14786419.2019.1601094

  20. Volpato GT, Calderon IMP, Sinzato S, Campos KE, Rudge MVC, Damasceno DC. Effect of Morus nigra aqueous extract treatment on the maternal fetal outcome, oxidative stress status and lipid profile of streptozotocin-induced diabetic rats. J Ethnopharma. 2011;138(3):691-6. DOI: https://doi.org/10.1016/j.jep.2011.09.044

  21. de Mesquita Padilha M, Vilela FC, da Silva MJD, dos Santos MH, Alves-da-Silva G, Giusti-Paiva A. Antinociceptive effect of the extract of Morus nigra leaves in mice. J Med Food. 2009;12(6):1381-5. DOI: https://doi.org/10.1089/jmf.2009.0012

  22. Padilha MM, Vilela FC, Rocha CQ, Dias MJ, Soncini R, Santos MH, et al. Antiinflammatory properties of Morus nigra leaves. Phytother Research. 2010;24(10):1496-500. DOI: https://doi.org/10.1002/ptr.3134

  23. Zoofishan Z, Kúsz N, Csorba A, Tóth G, Hajagos-Tóth J, Kothencz A, et al. Antispasmodic activity of prenylated phenolic compounds from the root bark of Morus nigra. Molecules. 2019;8:24(13). DOI: https://doi.org/10.3390/molecules24132497

  24. Figueredo KC, Guex CG, Reginato FZ, Haas da Silva AR, Cassanego GB, Lhamas CL, et al. Safety assessment of Morus nigra L. leaves: Acute and subacute oral toxicity studies in Wistar rats. J Ethnopharma. 2018;224:290-6. DOI: https://doi.org/10.1016/j.jep.2018.05.013

  25. Fahimi Z, Jahromy MH. Effects of blackberry (Morus nigra) fruit juice on levodopa-induced dyskinesia in a mice model of Parkinson’s disease. J of Experim Pharma. 2018;10:29-35. DOI: https://doi.org/10.2147/JEP.S161782

  26. Qadir MI, Ali M, Ibrahim Z. Anticancer activity of Morus nigra leaves extract. Bangla J Pharma. 2014;9(4):496-7. DOI: https://doi.org/10.3329/bjp.v9i4.19783

  27. Turan I, Demir S, Kilinc K, Burnaz NA, Yaman SO, Akbulut K, et al. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells. Saudi Pharma J. 2017;25(2):241-8. DOI: https://doi.org/10.1016/j.jsps.2016.06.002

  28. Freitas MM, Fontes PR, Souza PM, Fagg CW, Guerra ENS, Nóbrega YK, et al. Extracts of Morus nigra L. Leaves standardized in chlorogenic acid, rutin and isoquercitrin: Tyrosinase inhibition and cytotoxicity. PLOS ONE. 2016;11(9):e0163130. DOI: https://doi.org/10.1371/journal.pone.0163130

  29. Ribeiro AEAS, Soares JMD, Silva HAL, Wanderley CW, Moura CA, de Oliveira-Junior RG, et al. Inhibitory effects of Morus nigra L. (Moraceae) against local paw edema and mechanical hypernociception induced by Bothrops jararacussu snake venom in mice. Biomed Pharma. 2019;111:1046-56. DOI: https://doi.org/10.1016/j.biopha.2019.01.011

  30. Dalmagro AP, Camargo A, da Silva Filho HH, Valcanaia MM, de Jesus PC, Zeni ALB. Seasonal variation in the antioxidant phytocompounds production from the Morus nigra leaves. Ind Crops Prod. 2018;123:323-30. DOI: https://doi.org/10.1016/j.indcrop.2018.06.085

  31. Nastić N, Borrás Linares I, Lozano Sánchez J, Švarc Gajić J, Segura Carretero A. Optimization of the extraction of phytochemicals from black mulberry (Morus nigra L.) leaves. J Ind Engin Chem. 2018;68:282-92. DOI: https://doi.org/10.1016/j.jiec.2018.07.055

  32. Geyikoglu F, Yilmaz EG, Erol HS, Koc K, Cerig S, Ozek NS, et al. Hepatoprotective role of thymol in drug-induced gastric ulcer Model. Annals Hepat. 2018;17(6):980-91. DOI: https://doi.org/10.5604/01.3001.0012.7198

  33. Azarmehr N, Afshar P, Moradi M, Sadeghi H, Sadeghi H, Alipoor B, et al. Hepatoprotective and antioxidant activity of watercress extract on acetaminophen-induced hepatotoxicity in rats. Heliyon. 2019;5(7):e02072. DOI: https://doi.org/10.1016/j.heliyon.2019.e02072

  34. Abirami A, Nagarani G, Siddhuraju P. Hepatoprotective effect of leaf extracts from Citrus hystrix and C. maxima against paracetamol induced liver injury in rats. Food Sci Human Wellness. 2015;4(1):35-41. DOI: https://doi.org/10.1016/j.fshw.2015.02.002

  35. Mohammadi S, Nezami A, Esmaeili Z, Rouini MR, Ardakani YH, Lavasani H, et al. Pharmacokinetic changes of tramadol in rats with hepatotoxicity induced by ethanol and acetaminophen in perfused rat liver model. Alcohol. 2019;77:49-57. DOI: https://doi.org/10.1016/j.alcohol.2018.09.006

  36. Ozcelik E, Uslu S, Erkasap N, Karimi H. Protective effect of chitosan treatment against acetaminophen-induced hepatotoxicity. Kaoh J Med Sci. 2014;30(6):286-90. DOI: https://doi.org/10.1016/j.kjms.2014.02.003

  37. Binitha RRV, Shajahan MA, Muhamed J, Anilkumar TV, Premlal S, Indulekha VC. Hepatoprotective effect of Lobelia alsinoides Lam. in Wistar rats. J Ayurv Integ Med. 2019. DOI: https://doi.org/10.1016/j.jaim.2019.04.004

  38. Fahmy AA, Fouad MM, Arafat OM, Abd El-Fathaah E. Aminoguanidine potentiates the hepatoprotective effect of silymarin in CCL4 treated rats. Ann Hepat. 2011;10(2):207-15. DOI: https://doi.org/10.1016/S1665-2681(19)31570-4

  39. Ren X, Xin LT, Zhang MQ, Zhao Q, Yue SY, Chen KX, et al. Hepatoprotective effects of a traditional Chinese medicine formula against carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Biomed Pharma. 2019;117:109190. DOI: https://doi.org/10.1016/j.biopha.2019.109190

  40. Mallhi TH, Qadir MI, Khan YH, Ali M. Hepatoprotective activity of aqueous methanolic extract of Morus nigra against paracetamol-induced hepatotoxicity in mice. Bangla J Pharma 2014;9(1):60-6. DOI: https://doi.org/10.3329/bjp.v9i1.17337

  41. Reitman S, Frankel S. A colorimetric method for the determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Amer J Clin Pathol. 2017;28(1):56-63. DOI: https://doi.org/10.1093/ajcp/28.1.56

  42. Maes M, Vinken M, Jaeschke H. Experimental models of hepatotoxicity related to acute liver failure. Toxicol Appl Pharma. 2016;290:86-97. DOI: https://doi.org/10.1016/j.taap.2015.11.016

  43. Uchida NS, Silva-Filho SE, Cardia GFE, Cremer E, Silva Comar FM, Silva EL, et al. Hepatoprotective effect of citral on acetaminophen-induced liver toxicity in mice. Evid Bas Compl Altern Med. 2017:1796209. DOI: https://doi.org/10.1155/2017/1796209

  44. Hosseini AS, Akramian M, Khadivi A, Salehi Arjmand H. Phenotypic and chemical variation of black mulberry (Morus nigra) genotypes. Ind Crops Prod. 2018;117:260-71. DOI: https://doi.org/10.1016/j.indcrop.2018.03.007

  45. Tag HM. Hepatoprotective effect of mulberry (Morus nigra) leaves extract against methotrexate induced hepatotoxicity in male albino rat. BMC Compl Altern Med. 2015;15(1):252. DOI: https://doi.org/10.1186/s12906-015-0744-y

  46. Thabti I, Marzougui N, Elfalleh W, Ferchichi A. Antioxidant composition and antioxidant activity of white (Morus alba L.), black (Morus nigra L.) and red (Morus rubra L.) mulberry leaves. Act Bot Gallica. 2011;158(2):205-14. DOI: https://doi.org/10.1080/12538078.2011.10516267

  47. Iqbal S, Younas U, Sirajuddin Chan KW, Sarfraz RA, Uddin MK. Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.): A comparative study. Inter J Molec Sci. 2012;13(6):6651-64. DOI: https://doi.org/10.3390/ijms13066651

  48. Ayaz MA, Najma M, Devanand LD, Muhammad BM, Amanat PA. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol J Food Nut Sci. 2010 [acceso: 10/12/2021];60(1). Disponible en: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-70198bea-e960-47bd-9de9-d821124cb52b

  49. Pérez Gregorio MR, Regueiro J, Alonso González E, Pastrana Castro LM, Simal Gándara J. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). LWT Food Sci Techn. 2011;44(8):1793-1801. DOI: https://doi.org/10.1016/j.lwt.2011.03.007

  50. Sánchez Salcedo EM, Tassotti M, Del Rio D, Hernández F, Martínez JJ, Mena P. (Poly) phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC–MS approach. Food Chem. 2016;212:250-55. DOI: https://doi.org/10.1016/j.foodchem.2016.05.121

  51. Wang L, Gong T, Chen RY. Two new prenylflavonoids from Morus nigra L. Chin Chem Letters. 2009;20(12):1469-71. DOI: https://doi.org/10.1016/j.cclet.2009.06.035

  52. Xu LJ, Yu MH, Huang CY, Niu LX, Wang YF, Wu CZ, et al. Isoprenylated flavonoids from Morus nigra and their PPAR γ agonistic activities. Fitoterapia. 2018;127:109-14. DOI: https://doi.org/10.1016/j.fitote.2018.02.004




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2021;26

ARTíCULOS SIMILARES

CARGANDO ...