medigraphic.com
ENGLISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 3

<< Anterior Siguiente >>

Rev Biomed 2023; 34 (3)


Receptor de los productos finales de glicación avanzada (RAGE) como biomarcador de la obesidad infantil

Vega-Cárdenas M, Portales-Pérez DP, Vargas-Morales JM, Aradillas-García C
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 63
Paginas: 296-305
Archivo PDF: 228.01 Kb.


PALABRAS CLAVE

AGE, RAGE, sRAGE, obesidad infantil.

RESUMEN

Introducción. La hiperglucemia e hiperlipidemia contribuyen a la formación endógena de productos finales de glicación avanzada (AGEs), y la dieta constituye parte de las fuentes exógenas. La unión de AGEs al receptor de los productos finales de glicación (RAGE), induce vías de señalización que culminan en la activación de factores de transcripción que promueven la expresión de marcadores inflamatorios y de estrés oxidativo. Los niveles de RAGE soluble (sRAGE) se han propuesto como biomarcador en enfermedades que cursan con un proceso inflamatorio. Diversos estudios describen el papel de RAGE en la obesidad, por lo que se ha discutido si existe un patrón diferencial entre niños con normo peso y obesidad.
Objetivo. Describir la relación entre RAGE, sus isoformas, ligandos, funciones biológicas, y la comorbilidad relacionada con la obesidad infantil. Determinar si los niveles disminuidos de sRAGE representan un biomarcador de la obesidad infantil con base en los resultados de estudios clínicos, observacionales y transversales.
Metodología. Revisión descriptiva de estudios publicados entre los años 2016 y 2022 en las bases de datos PubMed y Google Académico empleando los términos “AGEs”, “RAGE”, “sRAGE” y “obesidad infantil”.
Resultados y conclusiones. Fueron consultados un total de 141 artículos relacionados con las palabras clave. El criterio de eliminación consistió en referencias publicadas antes del 2015, con excepción de las referencias clásicas. Se revisaron 63 artículos de 2016 a 2022, seis representan estudios transversales sobre los niveles de sRAGE en población pediátrica, encontrando diferencias en la expresión de RAGE de acuerdo con el estado nutricional.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Weihrauch-Blüher S, Schwarz P, Klusmann JH.Childhood obesity: increased risk for cardiometabolicdisease and cancer in adulthood. Metabolism. 2019 Mar;92:147–52. doi: 10.1016/j.metabol.2018.12.001

  2. Di Cesare M, Sorić M, Bovet P, Miranda JJ, BhuttaZ, Stevens GA, et al. The epidemiological burden ofobesity in childhood: a worldwide epidemic requiringurgent action. BMC Med. 2019 Nov; 17(1) :212. doi:10.1186/s12916-019-1449-8

  3. Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, GabbianelliR, Mazur A, et al. Obesity and Cardiometabolic RiskFactors: From Childhood to Adulthood. Nutrients. 2021Nov; 13(11):4176. doi:10.3390/nu13114176.

  4. De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C,Siekmann J. Development of a WHO growth referencefor school-aged children and adolescents. Bull WorldHealth Organ. 2007 Sep; 85(9):660-7. doi: 10.2471/blt.07.043497.

  5. Kansra AR, Lakkunarajah S, Jay MS. Childhood andAdolescent Obesity: A Review. Vol. 8, Frontiers inPediatrics. Front Pediatr. 2021 Jan; 12(8):581461.doi:10.3389/fped.2020.581461.

  6. Caprio S, Santoro N, Weiss R. Childhood obesity andthe associated rise in cardiometabolic complications. NatMetab. 2020 Mar; 2(3):223-232. doi: 10.1038/s42255-020-0183-z.

  7. Kumar S, Kelly AS. Review of Childhood Obesity:From Epidemiology, Etiology, and Comorbiditiesto Clinical Assessment and Treatment. Mayo ClinicProceedings. 2017 Feb; 92(2):251-265. doi: 10.1016/j.mayocp.2016.09.017.

  8. Rogero MM, Calder PC. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. 2018 Mar;10(4):432. doi: 10.3390/nu10040432.

  9. Vincent HK, Taylor AG. Biomarkers and potentialmechanisms of obesity-induced oxidant stress inhumans. Int J Obes (Lond). 2006 Mar; (3):400-18. doi:

  10. 10.1038/sj.ijo.0803177.10. Faienza MF, Francavilla R, Goffredo R, Ventura A,Marzano F, Panzarino G, et al. Oxidative Stress inObesity and Metabolic Syndrome in Children andAdolescents. Horm Res Paediatr. 2012; 78(3):158–164.doi: 10.1159/000342642

  11. Moldogazieva NT, Mokhosoev IM, Mel’Nikova TI,Porozov YB, Terentiev AA. Oxidative Stress andAdvanced Lipoxidation and Glycation End Products(ALEs and AGEs) in Aging and Age-Related Diseases.Oxid Med Cell Longev. 2019 Aug; 2019:3085756. doi:10.1155/2019/3085756.

  12. Prasad K, Mishra M. AGE–RAGE Stress, Stressors, andAntistressors in Health and Disease. Int J Angiol. 2018Mar; (1):1-12. doi: 10.1155/2019/308575610.1055/s-0037-1613678.

  13. Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J.Dietary AGEs as Exogenous Boosters of Inflammation.Nutr. 2021 Aug; 13(8):2802. doi: 10.3390/nu13082802.

  14. Stern D, Du Yan S, Fang Yan S, Marie Schmidt A.Receptor for advanced glycation endproducts: Amultiligand receptor magnifying cell stress in diversepathologic settings. Adv Drug Deliv Rev. 2002 Dec;54(12):1615–25. doi:10.1016/s0169-409x(02)00160-6.

  15. J Liu, A Lin. Wiring the cell signaling circuitry by theNF-kappa B and JNK1 crosstalk and its applications inhuman diseases. Oncogene. 2007 May; 26(22):3267-78.doi: 10.1038/sj.onc.1210417.

  16. Chen YH, Chen ZW, Li HM, Yan XF, Feng B. AGE/RAGE-Induced EMP Release via the NOX-DerivedROS Pathway. J Diabetes Res. 2018 Mar; 2018:6823058.doi: 10.1155/2018/6823058.

  17. Ruiz HH, Nguyen A, Wang C, He L, Li H, HallowellP, et al. AGE/RAGE/DIAPH1 axis is associated withimmunometabolic markers and risk of insulin resistancein subcutaneous but not omental adipose tissue in humanobesity. Int J Obes (Lond). 2021 Sep; 45(9):2083-2094.doi:10.1038/s41366-021-00878-3.

  18. Erusalimsky JD. The use of the soluble receptor foradvanced glycation-end products (sRAGE) as a potentialbiomarker of disease risk and adverse outcomes.Redox Biol. 2021 Jun; 42:101958. doi: 10.1016/j.redox.2021.101958.

  19. Henning C, Glomb MA. Pathways of the Maillardreaction under physiological conditions. Glycoconj J.

  20. 2016 Aug; 33(4):499–512. doi: 10.1007/s10719-016-9694-y.20. Perrone A, Giovino A, Benny J, Martinelli F. AdvancedGlycation End Products (AGEs): Biochemistry,Signaling, Analytical Methods, and Epigenetic Effects.Oxid Med Cell Longev. 2020 Mar; (2020):3818196. doi:10.1155/2020/3818196.

  21. Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. Aliterature review on maillard reaction based on milkproteins and carbohydrates in food and pharmaceuticalproducts: Advantages, disadvantages, and avoidancestrategies. Foods. 2021 Aug; 10(9):1998. doi: 10.3390/foods10091998.

  22. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al.New insights into oxidative stress and inflammationduring diabetes mellitus-accelerated atherosclerosis.Redox Biol. 2019 Jan; 20:247–60. doi: 10.1016/j.redox.2018.09.025.

  23. Byun K, Yoo YC, Son M, Lee J, Jeong GB, Park YM,et al. Advanced glycation end-products producedsystemically and by macrophages: A commoncontributor to inflammation and degenerative diseases.Pharmacol Ther. 2017 Sep; 177:44–55. doi: 10.1016/j.pharmthera.2017.02.030.

  24. Sugaya K, Fukagawa T, Matsumoto KI, Mita K,Takahashi EI, Ando A, et al. Three Genes in the HumanMHC Class III Region near the Junction with the ClassII: Gene for Receptor of Advanced Glycosylation EndProducts, PBX2 Homeobox Gene and a Notch Homolog,Human Counterpart of Mouse Mammary Tumor Geneint-3. Genomics. 1994 Sep 15;23(2):408–19. doi:10.1006/geno.1994.1517.

  25. Hudson BI, Carter AM, Harja E, Kalea AZ, ArrieroM, Yang H, et al. Identification, classification, andexpression of RAGE gene splice variants. FASEB J.2008 May;22(5):1572–80. doi: 10.1096/fj.07-9909com.

  26. Serveaux-Dancer M, Jabaudon M, Creveaux I,Belville C, Blondonnet R, Gross C, et al. Pathologicalimplications of receptor for advanced glycation endproduct(AGER) gene polymorphism. Dis Markers.2019 Feb ;(2019):2067353. doi: 10.1155/2019/2067353.

  27. Raucci A, Cugusi S, Antonelli A, Barabino SM, MontiL, Bierhaus A, et al. A soluble form of the receptor foradvanced glycation endproducts (RAGE) is producedby proteolytic cleavage of the membrane-bound formby the sheddase a disintegrin and metalloprotease 10(ADAM10). FASEB J. 2008 Oct;22(10):3716–doi:10.1096/fj.08-109033

  28. Park IH, Yeon SI, Youn JH, Choi JE, Sasaki N, ChoiIH, et al. Expression of a novel secreted splice variantof the receptor for advanced glycation end products(RAGE) in human brain astrocytes and peripheralblood mononuclear cells. Mol Immunol. 2004 Mar;40(16):1203–11. doi: 10.1016/j.molimm.2003.11.027.

  29. Bongarzone S, Savickas V, Luzi F, Gee AD. Targetingthe Receptor for Advanced Glycation Endproducts(RAGE): A Medicinal Chemistry Perspective. J MedChem. 2017 Sep ;60(17):7213-7232. doi: 10.1021/acs.jmedchem.7b00058.

  30. Aragno M, Mastrocola R. Dietary Sugars and EndogenousFormation of Advanced Glycation Endproducts:Emerging Mechanisms of Disease. Nutrients. 2017 Apr;9(4):385. doi: 10.3390/nu9040385.

  31. Voyer, LE, Alvarado C. Reacción de Maillard: Efectospatogénicos. Med (Buenos Aires). 2019;79.2:137–43.

  32. Pratte KA, Curtis JL, Kechris K, Couper D, Cho MH,Silverman EK, et al. Soluble receptor for advancedglycation end products (sRAGE) as a biomarkerof COPD. Respir Res. 2021 Apr; 22(1):127. doi.org/10.1186/s12931-021-01686-z.

  33. Hudson BI, Lippman ME. Targeting RAGE Signalingin Inflammatory Disease. Annu Rev Med. 2018 Jan;69:349-364. doi: 10.1146/annurev-med-041316-085215

  34. Rowan S, Bejarano E, Taylor A. Mechanistic targeting ofadvanced glycation end-products in age-related diseases.Biochim Biophys Acta Mol Basis Dis. 2018 Dec;1864(12):3631-3643. doi: 10.1016/j.bbadis.2018.08.036.

  35. Teissier T, Boulanger É. The receptor for advancedglycation end-products (RAGE) is an importantpattern recognition receptor (PRR) for inflammaging.Biogerontology. 2019 Jun; 20(3):279-301. doi: 10.1007/s10522-019-09808-3

  36. Ruiz HH, Ramasamy R, Schmidt AM. AdvancedGlycation End Products: Building on the Concept of the“Common Soil” in Metabolic Disease. Endocrinology.2020 Jan; 161(1):bqz006. doi:10.1210/endocr/bqz006.

  37. Kawai T, Autieri M V., Scalia R. Inflammation: FromCellular Mechanisms to Immune Cell Education:Adipose tissue inflammation and metabolic dysfunctionin obesity. Am J Physiol Cell Physiol. 2021 Mar;320(3):C375-C391. doi: 10.1152/ajpcell.00379.2020.

  38. Longo M, Zatterale F, Naderi J, Parrillo L, FormisanoP, Raciti GA, et al. Adipose Tissue Dysfunctionas Determinant of Obesity-Associated MetabolicComplications. Int J Mol Sci. 2019 May; 20(9):2358.doi: 10.3390/ijms20092358.

  39. Feng Z, Du Z, Shu X, Zhu L, Wu J, Gao Q, et al. Role ofRAGE in obesity-induced adipose tissue inflammationand insulin resistance. Cell Death Discov . 2021 Oct;7(1):305. doi: 10.1038/s41420-021-00711-w.

  40. Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS,Reverdatto S, Gugger PF, et al. Receptor for advancedglycation end products (Rage) and mechanisms andtherapeutic opportunities in diabetes and cardiovasculardisease: Insights from human subjects and animalmodels. Front Cardiovasc Med. 2020 Mar; 7:37. doi:10.3389/fcvm.2020.00037.

  41. Feng Z, Zhu L, Wu J. RAGE signalling inobesity and diabetes: focus on the adipose tissuemacrophage. Adipocyte. 2020 Jan 1;9(1):563–6. doi:10.1080/21623945.2020.1817278.

  42. Dozio E, Vianello E, Bandera F, Longhi E, BrizzolaS, Nebuloni M, et al. Soluble Receptor for AdvancedGlycation End Products: A Protective Molecule againstIntramyocardial Lipid Accumulation in Obese ZuckerRats? Mediators Inflamm. 2019 Feb; 2019:2712376. doi:10.1155/2019/2712376.

  43. Velayoudom-Cephise FL, Cano-Sanchez M, BercionS, Tessier F, Yu Y, Boulanger E, et al. Receptor foradvanced glycation end products modulates oxidativestress and mitochondrial function in the soleus muscle ofmice fed a high-fat diet. Appl Physiol Nutr Metab. 2020Oct;45(10):1107-1117. doi: 10.1139/apnm-2019-0936.

  44. Aglago EK, Rinaldi S, Freisling H, Jiao L, HughesDJ, Fedirko V, et al. Soluble Receptor for AdvancedGlycation End-products (sRAGE) and Colorectal CancerRisk: A Case-Control Study Nested within a EuropeanProspective Cohort. Cancer Epidemiol Biomarkers Prev.2021 Jan; 30(1):182–92. doi: 10.1158/1055-9965.EPI-20-0855.

  45. Laudenslager M, Lazo M, Wang D, Selvin E, ChenPH, Pankow JS, et al. Association between the solublereceptor for advanced glycation end products (sRAGE)and NAFLD in participants in the Atherosclerosis Risk inCommunities Study. Dig Liver Dis. 2021 Jul; 53(7):873-878. doi: 10.1016/j.dld.2021.02.005.

  46. Nowak A, Przywara-Chowaniec B, Damasiewicz-Bodzek A, Blachut D, Nowalany-Kozielska E, Tyrpień-Golder K. Advanced glycation end-products (Ages) andtheir soluble receptor (srage) in women suffering fromsystemic lupus erythematosus (SLE). Cells. 2021 Dec;10(12):3523. doi: 10.3390/cells10123523.

  47. Detzen L, Cheng B, Chen CY, Papapanou PN, Lalla E.Soluble Forms of the Receptor for Advanced GlycationEndproducts (RAGE) in Periodontitis. Sci Rep. 2019Jun; 9(1):8170. doi: 10.1038/s41598-019-44608-2.

  48. Tsoporis JN, Hatziagelaki E, Gupta S, Izhar S, Salpeas V,Tsiavou A, et al. Circulating Ligands of the Receptor forAdvanced Glycation End Products and the Soluble Formof the Receptor Modulate Cardiovascular Cell Apoptosisin Diabetes. Molecules. 2020 Nov; 25(22):5235. doi:10.3390/molecules25225235.

  49. Miranda ER, Somal VS, Mey JT, Blackburn BK, WangE, Farabi S, et al. Circulating soluble RAGE isoformsare attenuated in obese, impaired-glucose-tolerantindividuals and are associated with the developmentof type 2 diabetes. Am J Physiol Endocrinol Metab.2017 Dec; 313(6):E631-E640. doi: 10.1152/ajpendo.00146.2017.

  50. Guclu M, Ali A, Eroglu DU, Büyükuysal SO, Cander S,Ocak N. Serum Levels of sRAGE Are Associated withBody Measurements, but Not Glycemic Parameters inPatients with Prediabetes. Metab Syndr Relat Disord.2016 Feb;14(1):33-9. doi: 10.1089/met.2015.0078.

  51. Chung ST, Onuzuruike AU, Magge SN. Cardiometabolicrisk in obese children. Ann N Y Acad Sci.2018;1411(1):166. doi: 10.1111/nyas.13602.

  52. Pearce C, Islam N, Bryce R, McNair ED. AdvancedGlycation End Products:Receptors for AdvancedGlycation End Products Axis in Coronary StentRestenosis: A Prospective Study. Int J Angiol. 2018 Dec;27(4):213-222. doi: 10.1055/s-0038-1673660.

  53. Tsoporis JN, Hatziagelaki E, Gupta S, Izhar S, Salpeas V,Tsiavou A, et al. Circulating Ligands of the Receptor forAdvanced Glycation End Products and the Soluble Formof the Receptor Modulate Cardiovascular Cell Apoptosisin Diabetes. Molecules. 2020 Nov; 25(22):5235. doi:10.3390/molecules25225235.

  54. Popp CJ, Zhou B, Manigrasso MB, Li H, Curran M, HuL, et al. Soluble Receptor for Advanced Glycation EndProducts (sRAGE) Isoforms Predict Changes in RestingEnergy Expenditure in Adults with Obesity duringWeight Loss. Curr Dev Nutr. 2022 Mar 29;6(5):nzac046.doi: 10.1093/cdn/nzac046.

  55. Corica D, Aversa T, Ruggeri RM, Cristani M, AlibrandiA, Pepe G, et al. Could AGE/RAGE-related oxidativehomeostasis dysregulation enhance susceptibility topathogenesis of cardio-metabolic complications inchildhood obesity? Front Endocrinol (Lausanne). 2019Jun; 10:426. doi: 10.3389/fendo.2019.00426.

  56. Masania J, Malczewska-Malec M, Razny U, GoralskaJ, Zdzienicka A, Kiec-Wilk B, et al. Dicarbonyl stressin clinical obesity. Glycoconj J. 2016 Aug; 33(4):581-9.doi: 10.1007/s10719-016-9692-0.

  57. Gupta A, Uribarri J. Dietary Advanced Glycation EndProducts and Their Potential Role in CardiometabolicDisease in Children. Horm Res Paediatr. 2016;85(5):291-300. doi: 10.1159/000444053.

  58. Rodríguez-Mortera R, Luevano-Contreras C, Solorio-Meza S, Gómez-Ojeda A, Caccavello R, Bains Y, et al.Soluble Receptor for Advanced Glycation End Productsand Its Correlation with Vascular Damage in Adolescentswith Obesity. Horm Res Paediatr. 2019; 92(1):28-35.doi: 10.1159/000501718.

  59. Rowisha M, El-Batch M, El Shikh T, El Melegy S,Aly H. Soluble receptor and gene polymorphism forAGE: relationship with obesity and cardiovascularrisks. Pediatr Res. 2016 Jul; 80(1):67-71. doi: 10.1038/pr.2016.55.

  60. Garciá-Salido A, Melen G, Gómez-Pinã V, Onõro-Otero G, Serrano-González A, Casado-Flores J, et al.Circulating soluble RAGE and cell surface RAGE onperipheral blood mononuclear cells in healthy children. JPediatr Endocrinol Metab. 2018 Jun; 31(6):649-654. doi:10.1515/jpem-2017-0512.

  61. Ruelas Cinco E del C, Madrigal BR, Domínguez RosalesJA, Maldonado González M, De la Cruz Color L, RamírezMeza SM, et al. Expression of the receptor of advancedglycation end-products (RAGE) and membranal locationin peripheral blood mononuclear cells (PBMC) in obesityand insulin resistance. Iran J Basic Med Sci. 2019 Jun;22(6):623-630. doi: 10.22038/ijbms.2019.34571.8206.

  62. Garay-Sevilla ME, Torres-Graciano S, Villegas-Rodríguez ME, Rivera-Cisneros AE, Wrobel K, UribarriJ. Advanced glycation end products and their receptorsdid not show any association with body mass parametersin metabolically healthy adolescents. Acta Paediatr IntJ Paediatr. 2018 Dec 1;107(12):2146–51. doi: 10.1111/apa.14426.

  63. Gurecká R, Koborová I, Csongová M, Šebek J, ŠebekováK. Correlation among soluble receptors for advancedglycation end-products, soluble vascular adhesionprotein-1/semicarbazide-sensitive amine oxidase (sVAP-1) and cardiometabolic risk markers in apparentlyhealthy adolescents: a cross-sectional study. GlycoconjJ. 2016 Aug;33(4):599-606. doi: 10.1007/s10719-016-9696-9.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2023;34

ARTíCULOS SIMILARES

CARGANDO ...