medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)


Uso de la inteligencia artificial en la investigación para el reposicionamiento de fármacos

Olascoaga-Del Angel KS, Konigsberg-Fainstein M, Pérez-Villanueva J, López Díaz-Guerrero NE
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 107
Paginas: 1-17
Archivo PDF: 635.07 Kb.


PALABRAS CLAVE

reposicionamiento de fármacos, inteligencia artificial, descubrimiento de fármacos, aprendizaje automático, quimioinformática.

RESUMEN

El desarrollo de algoritmos para su utilización en la inteligencia artificial y la disponibilidad masiva de datos biomédicos han impulsado y acelerado la investigación, con el resultado de descubrimientos y de tratamientos novedosos utilizando fármacos patentados y aprobados para el tratamiento de diferentes enfermedades. Este proceso se conoce como reposicionamiento de fármacos (REFA), y puede ser abordado por una rama de la inteligencia artificial (IA) conocida como aprendizaje automático (AA). El aprendizaje automático se basa en un conjunto de algoritmos que, combinados con técnicas computacionales bien establecidas en el campo del descubrimiento de fármacos, han sido capaces de dar lugar, con una alta eficacia, a nuevas propiedades y relaciones farmacológicas anteriormente desconocidas. Así, se han identificado nuevos blancos y tratamientos potenciales contra diversos padecimientos como el cáncer, y las enfermedades neurodegenerativas e infecciosas, entre otras. El objetivo de este trabajo de revisión es contribuir a la literatura en español sobre el uso de la inteligencia artificial y el aprendizaje de máquina en la investigación para el reposicionamiento de fármacos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P.& Zhavoronkov, A. (2016). Deep learning applicationsfor predicting pharmacological properties of drugs anddrug repurposing using transcriptomic data. MolecularPharmaceutics, 13(7), 2524–2530. https://doi.org/10.1021/acs.molpharmaceut.6b00248

  2. Aronskyy, I., Masoudi-Sobhanzadeh, Y., Cappuccio, A. &Zaslavsky, E. (2021). Advances in the computationallandscape for repurposed drugs against COVID-19.Drug Discovery Today, 26(12), 2800-2815.s https://doi.org/10.1016/j.drudis.2021.07.026

  3. Barardo, D. G., Newby, D., Thornton, D., Ghafourian, T., deMagalhães, J. P. & Freitas, A. A. (2017). Machine learningfor predicting lifespan-extending chemical compounds.Aging, 9(7), 1721–1737. https://doi.org/10.18632/aging.101264

  4. Baskin, I. I. (2021). Practical constraints with machine learningin drug discovery. Expert opinion on drug discovery, 16(9),929–931. https://doi.org/10.1080/17460441.2021.1887133

  5. Baştanlar, Y. & Ozuysal, M. (2014). Introduction to machinelearning. Methods in Molecular Biology (Clifton, N.J.),1107, 105–128. https://doi.org/10.1007/978-1-62703-748-8_7

  6. Cording, M., Derry, S., Phillips, T., Moore, R. A. & Wiffen, P.J. (2015). Milnacipran for pain in fibromyalgia in adults.Cochrane Database of Systematic Reviews, 2015(10),CD008244. https://doi.org/10.1002/14651858.CD008244.pub3

  7. Crunkhorn, S. (2020). Predicting novel antibacterial agents.Nature Reviews Drug Discovery, 19(4), 238. https://doi.org/10.1038/d41573-020-00033-z

  8. Chuang, J. C. & Neal, J. W. (2015). Crizotinib as first line therapyfor advanced ALK-positive non-small cell lung cancers.Translational Lung Cancer Research, 4(5), 639–641. https://doi.org/10.3978/j.issn.2218-6751.2015.03.06

  9. Dash, S. S., Nayak, S. K. & Mishra, D. (2021) A Review onMachine Learning Algorithms. In: Mishra, D., Buyya,R., Mohapatra, P., Patnaik, S. (eds) Intelligent and CloudComputing. Smart Innovation, Systems and Technologies,Vol. 153. Springer, Singapore. https://doi.org/10.1007/978-981-15-6202-0_51

  10. Delijewski, M. & Haneczok, J. (2021). AI drug discoveryscreening for COVID-19 reveals zafirlukast as a repurposingcandidate. Medicine in Drug Discovery, 9, 100077. https://doi.org/10.1016/j.medidd.2020.100077

  11. Deshmukh, A. L., Chandra, S., Singh, D. K., Siddiqi, M.I. & Banerjee, D. (2017). Identification of human flapendonuclease 1 (FEN1) inhibitors using a machine learningbased consensus virtual screening. Molecular BioSystems,13(8), 1630–1639. https://doi.org/10.1039/c7mb00118e

  12. Dezső, Z. & Ceccarelli, M. (2020). Machine learning predictionof oncology drug targets based on protein and networkproperties. BMC Bioinformatics, 21(1), 104. https://doi.org/10.1186/s12859-020-3442-9

  13. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. (2016).Innovation in the pharmaceutical industry: New estimatesof R&D costs. Journal of Health Economics, 47, 20–33.https://doi.org/10.1016/j.jhealeco.2016.01.012

  14. Doan, T. & Kalita, J. (2015). Selecting machine learningalgorithms using regression models. 2015 IEEE InternationalConference on Data Mining Workshop (ICDMW). https://doi.org/10.1109/icdmw.2015.43

  15. Dönertaş, H. M., Fuentealba, M., Partridge, L. & Thornton, J.M. (2019). Identifying potential ageing-modulating drugsin silico. Trends in Endocrinology and Metabolism: TEM,30(2), 118–131. https://doi.org/10.1016/j.tem.2018.11.005

  16. Donner, Y., Kazmierczak, S. & Fortney, K. (2018). Drugrepurposing using deep embeddings of gene expressionprofiles. Molecular Pharmaceutics, 15(10), 4314–4325.https://doi.org/10.1021/acs.molpharmaceut.8b00284

  17. Ekins, S., Gerlach, J., Zorn, K. M., Antonio, B. M., Lin,Z. & Gerlach, A. (2019). Repurposing approved drugsas inhibitors of Kv7.1 and Nav1.8 to treat Pitt Hopkinssyndrome. Pharmaceutical Research, 36(9), 137. https://doi.org/10.1007/s11095-019-2671-y

  18. Emig, D., Ivliev, A., Pustovalova, O., Lancashire, L., Bureeva,S., Nikolsky, Y. & Bessarabova, M. (2013). Drug targetprediction and repositioning using an integrated networkbasedapproach. PLoS ONE, 8(4), e60618. https://doi.org/10.1371/journal.pone.0060618

  19. Fanelli, U., Pappalardo, M., Chinè, V., Gismondi, P., Neglia, C.,Argentiero, A., Calderaro, A., Prati, A. & Esposito, S. (2020).Role of artificial intelligence in fighting antimicrobialresistance in pediatrics. Antibiotics, 9(11), 767. https://doi.org/10.3390/antibiotics9110767

  20. Feng, Z., Chen, M., Xue, Y., Liang, T., Chen, H., Zhou, Y.,Nolin, T. D., Smith, R. B. & Xie, X. Q. (2020). MCCS:a novel recognition pattern-based method for fast trackdiscovery of anti-SARS-CoV-2 drugs. Briefings inBioinformatics, bbaa260. Advance online publication.https://doi.org/10.1093/bib/bbaa260

  21. Ferrero, E., Dunham, I. & Sanseau, P. (2017). In silico predictionof novel therapeutic targets using gene-disease associationdata. Journal of Translational Medicine, 15(1), 182. https://doi.org/10.1186/s12967-017-1285-6

  22. Gardiner, E. J., Willett, P. & Artymiuk, P. J. (2001). Proteindocking using a genetic algorithm. Proteins, 44(1), 44–56.https://doi.org/10.1002/prot.1070

  23. Gasteiger, J. (2020). Chemistry in times of artificial intelligence.ChemPhysChem, 21(20), 2233–2242. https://doi.org/10.1002/cphc.202000518

  24. Gautam, P., Jaiswal, A., Aittokallio, T., Al-Ali, H. & Wennerberg,K. (2019). Phenotypic screening combined with machinelearning for efficient identification of breast cancer-selectivetherapeutic targets. Cell Chemical Biology, 26(7), 970–979.e4. https://doi.org/10.1016/j.chembiol.2019.03.011

  25. Gottlieb, A., Stein, G. Y., Ruppin, E. & Sharan, R. (2011).PREDICT: a method for inferring novel drug indicationswith application to personalized medicine. MolecularSystems Biology, 7, 496. https://doi.org/10.1038/msb.2011.26

  26. Gupta, G. K., Collier, A. L., Lee, D., Hoefer, R. A., Zheleva,V., Siewertsz van Reesema, L. L., Tang-Tan, A. M., Guye,M. L., Chang, D. Z., Winston, J. S., Samli, B., Jansen, R.J., Petricoin, E. F., Goetz, M. P., Bear, H. D. & Tang, A.H. (2020). Perspectives on triple-negative breast cancer:current treatment strategies, unmet needs, and potentialtargets for future therapies. Cancers, 12(9), 2392. https://doi.org/10.3390/cancers12092392

  27. Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H.,Huang, S., Brooks, M., Lee, M. J. & Asadi, H. (2019).Peering into the black box of artificial intelligence:evaluation metrics of machine learning methods. AJR.American Journal of Roentgenology, 212(1), 38–43. https://doi.org/10.2214/AJR.18.20224

  28. Hasan Mahmud, S. M., Chen, W., Jahan, H., Dai, B., Din,S. U. & Dzisoo, A. M. (2020). DeepACTION: A deeplearning-based method for predicting novel drug-targetinteractions. Analytical Biochemistry, 610, 113978. https://doi.org/10.1016/j.ab.2020.113978

  29. Hearst, M., Dumais, S., Osuna, E., Platt, J. & Scholkopf,B. (1998). Support vector machines. IEEE IntelligentSystems and their Applications, 13(4), 18-28. https://doi.org/10.1109/5254.708428

  30. Himmelstein, D. S., Lizee, A., Hessler, C., Brueggeman, L.,Chen, S. L., Hadley, D., Green, A., Khankhanian, P. &Baranzini, S. E. (2017). Systematic integration of biomedicalknowledge prioritizes drugs for repurposing. eLife, 6,e26726. https://doi.org/10.7554/eLife.26726

  31. Hingorani, A. D., Kuan, V., Finan, C., Kruger, F. A., Gaulton, A.,Chopade, S., Sofat, R., MacAllister, R. J., Overington, J. P.,Hemingway, H., Denaxas, S., Prieto, D. & Casas, J. P. (2019).Improving the odds of drug development success throughhuman genomics: modelling study. Scientific Reports,9(1), 18911. https://doi.org/10.1038/s41598-019-54849-w

  32. Jolliffe, I. T. & Cadima, J. (2016). Principal componentanalysis: a review and recent developments. PhilosophicalTransactions of the Royal Society A, 374(2065), 20150202.https://doi.org/10.1098/rsta.2015.0202

  33. Joshi, S. N., Murphy, E. A., Olaniyi, P. & Bryant, R. J. (2021).The multiple effects of aspirin in prostate cancer patients.Cancer Treatment and Research Communications, 26,100267. https://doi.org/10.1016/j.ctarc.2020.100267

  34. Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P.,Vanhaelen, Q., Khrabrov, K. & Zhavoronkov, A. (2017). Thecornucopia of meaningful leads: Applying deep adversarialautoencoders for new molecule development in oncology.Oncotarget, 8(7), 10883–10890. https://doi.org/10.18632/oncotarget.14073

  35. Kapsiani, S. & Howlin, B. J. (2021). Random forest classificationfor predicting lifespan-extending chemical compounds.Scientific Reports, 11(1), 13812. https://doi.org/10.1038/s41598-021-93070-6

  36. Kato, S., Moulder, S. L., Ueno, N. T., Wheler, J. J., Meric-Bernstam, F., Kurzrock, R. & Janku, F. (2015). Challengesand perspective of drug repurposing strategies in earlyphase clinical trials. Oncoscience, 2(6), 576–580. https://doi.org/10.18632/oncoscience.173

  37. Kaul, V., Enslin, S. & Gross, S. A. (2020). History of artificialintelligence in medicine. Gastrointestinal Endoscopy,92(4), 807–812. https://doi.org/10.1016/j.gie.2020.06.040

  38. Ke, Y. Y., Peng, T. T., Yeh, T. K., Huang, W. Z., Chang, S.E., Wu, S. H., Hung, H. C., Hsu, T. A., Lee, S. J., Song,J. S., Lin, W. H., Chiang, T. J., Lin, J. H., Sytwu, H. K.& Chen, C. T. (2020). Artificial intelligence approachfighting COVID-19 with repurposing drugs. BiomedicalJournal, 43(4), 355–362. https://doi.org/10.1016/j.bj.2020.05.001

  39. Keshavarzi Arshadi, A., Salem, M., Collins, J., Yuan, J. S. &Chakrabarti, D. (2020). Deepmalaria: artificial intelligencedriven discovery of potent antiplasmodials. Frontiersin Pharmacology, 10, 1526. https://doi.org/10.3389/fphar.2019.01526

  40. Kim, E., Choi, A. S. & Nam, H. (2019). Drug repositioning ofherbal compounds via a machine-learning approach. BMCBioinformatics, 20(Suppl 10), 247. https://doi.org/10.1186/s12859-019-2811-8

  41. Kim, H., Kim, E., Lee, I., Bae, B., Park, M. & Nam, H. (2020).Artificial intelligence in drug discovery: a comprehensivereview of data-driven and machine learning approaches.Biotechnology and Bioprocess Engineering, 25(6), 895–930. https://doi.org/10.1007/s12257-020-0049-y

  42. Kononenko, I. (2001). Machine learning for medical diagnosis:history, state of the art and perspective. Artificial Intelligencein Medicine, 23(1), 89–109. https://doi.org/10.1016/s0933-3657(01)00077-x

  43. Koromina, M., Pandi, M. T. & Patrinos, G. P. (2019). Rethinkingdrug repositioning and development with artificialintelligence, machine learning, and omics. Omics: AJournal of Integrative Biology, 23(11), 539–548. https://doi.org/10.1089/omi.2019.0151

  44. Kumar, A., Loharch, S., Kumar, S., Ringe, R. P. & Parkesh, R.(2021). Exploiting cheminformatic and machine learningto navigate the available chemical space of potential smallmolecule inhibitors of SARS-CoV-2. Computational andStructural Biotechnology Journal, 19, 424–438. https://doi.org/10.1016/j.csbj.2020.12.028

  45. Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C.,Wrobel, M. J., Lerner, J., Brunet, J. P., Subramanian, A.,Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong,S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, S. A.,Lander, E. S. & Golub, T. R. (2006). The ConnectivityMap: using gene-expression signatures to connect smallmolecules, genes, and disease. Science, 313(5795), 1929–1935. https://doi.org/10.1126/science.1132939

  46. Le, D. H. & Nguyen-Ngoc, D. (2018). Drug repositioning byintegrating known disease-gene and drug-target associationsin a semi-supervised learning model. Acta Biotheoretica,66(4), 315–331. https://doi.org/10.1007/s10441-018-9325-z

  47. Levey, A. I., Qiu, D., Zhao, L., Hu, W. T., Duong, D. M.,Higginbotham, L., Dammer, E. B., Seyfried, N. T., Wingo,T. S., Hales, C. M., Gámez Tansey, M., Goldstein, D., Abrol,A., Calhoun, V. D., Goldstein, F. C., Hajjar, I., Fagan, A.M., Galasko, D., Edland, S. D., Hanfelt, J., Lah, J. J. &Weinshenker, D. (2021). A phase II study repurposingatomoxetine for neuroprotection in mild cognitiveimpairment. Brain, en prensa, https://doi.org/10.1093/brain/awab452

  48. Li, B., Dai, C., Wang, L., Deng, H., Li, Y., Guan, Z. & Ni, H.(2020). A novel drug repurposing approach for non-smallcell lung cancer using deep learning. PLoS ONE, 15(6),e0233112. https://doi.org/10.1371/journal.pone.0233112

  49. Li, J. & Lu, Z. (2012). A new method for computationaldrug repositioning using drug pairwise similarity.IEEE International Conference on Bioinformaticsand Biomedicine, 2012, 1–4. https://doi.org/10.1109/BIBM.2012.6392722

  50. Linderman, G. C. & Steinerberger, S. (2019). Clusteringwith t-SNE, provably. SIAM Journal on Mathematicsof Data Science, 1(2), 313–332. https://doi.org/10.1137/18m1216134

  51. Liu, R., Wei, L. & Zhang, P. (2021). A deep learning frameworkfor drug repurposing via emulating clinical trials on realworldpatient data. Nature Machine Intelligence, 3(1), 68-75.https://doi.org/10.1038/s42256-020-00276-w

  52. Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H. & Yao, X. (2018).Molecular dynamics simulations and novel drug discovery.Expert Opinion on Drug Discovery, 13(1), 23–37. https://doi.org/10.1080/17460441.2018.1403419

  53. Liu, Z., Guo, F., Gu, J., Wang, Y., Li, Y., Wang, D., Lu, L., Li, D.& He, F. (2015). Similarity-based prediction for anatomicaltherapeutic chemical classification of drugs by integratingmultiple data sources. Bioinformatics, 31(11), 1788–1795.https://doi.org/10.1093/bioinformatics/btv055

  54. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. &Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6),1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

  55. Loucera, C., Esteban-Medina, M., Rian, K., Falco, M. M.,Dopazo, J. & Peña-Chilet, M. (2020). Drug repurposingfor COVID-19 using machine learning and mechanisticmodels of signal transduction circuits related to SARSCoV-2 infection. Signal Transduction and Targeted Therapy,5(1), 290. https://doi.org/10.1038/s41392-020-00417-y

  56. Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F. X. & Pan,Y. (2016). Drug repositioning based on comprehensivesimilarity measures and Bi-Random walk algorithm.Bioinformatics, 32(17), 2664–2671. https://doi.org/10.1093/bioinformatics/btw228

  57. Lv, Q., Wang, D., Yang, Z., Yang, J., Zhang, R., Yang,X., Wang, M. & Wang, Y. (2018). Repurposingantitubercular agent isoniazid for treatment of prostatecancer. Biomaterials Science, 7(1), 296–306. https://doi.org/10.1039/c8bm01189c

  58. Malley, B., Ramazzotti, D. & Wu, J. T., Data pre-processing.2016 Sep 10. In: Secondary analysis of electronichealth records [Internet]. Cham (CH): Springer; 2016.Chapter 12. Available from: https://www.ncbi.nlm.nih.gov/books/NBK543629/. https://doi.org/10.1007/978-3-319-43742-2

  59. Mallikarjun, V. & Swift, J. (2016). Therapeutic manipulationof ageing: repurposing old dogs and discovering newtricks. EBioMedicine, 14, 24–31. https://doi.org/10.1016/j.ebiom.2016.11.020

  60. Mamoshina, P., Volosnikova, M., Ozerov, I. V., Putin, E.,Skibina, E., Cortese, F. & Zhavoronkov, A. (2018). Machinelearning on human muscle transcriptomic data for biomarkerdiscovery and tissue-specific drug target identification.Frontiers in Genetics, 9, 242. https://doi.org/10.3389/fgene.2018.00242

  61. March-Vila, E., Pinzi, L., Sturm, N., Tinivella, A., Engkvist,O., Chen, H. & Rastelli, G. (2017). On the integrationof in silico drug design methods for drug repurposing.Frontiers in Pharmacology, 8, 298. https://doi.org/10.3389/fphar.2017.0029861. Mattiuzzi, C. & Lippi, G. (2019). Current cancer epidemiology.Journal of Epidemiology and Global Health, 9(4), 217–222.https://doi.org/10.2991/jegh.k.191008.001

  62. Meng, X. Y., Zhang, H. X., Mezei, M. & Cui, M.(2011). Molecular docking: a powerful approach forstructure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602

  63. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto,M. (2017). Opportunities and challenges in phenotypicdrug discovery: an industry perspective. Nature ReviewsDrug Discovery, 16(8), 531–543. https://doi.org/10.1038/nrd.2017.111

  64. Mohamed, K., Yazdanpanah, N., Saghazadeh, A. & Rezaei, N.(2021). Computational drug discovery and repurposingfor the treatment of COVID-19: A systematic review.Bioorganic Chemistry, 106, 104490. https://doi.org/10.1016/j.bioorg.2020.104490

  65. Mohanty, S., Harun Ai Rashid, M., Mridul, M., Mohanty,C. & Swayamsiddha, S. (2020). Application of artificialintelligence in COVID-19 drug repurposing. Diabetes &Metabolic Syndrome: Clinical Research & Reviews, 14(5),1027–1031. https://doi.org/10.1016/j.dsx.2020.06.068

  66. Mohapatra, S., Nath, P., Chatterjee, M., Das, N., Kalita, D.,Roy, P. & Satapathi, S. (2020). Repurposing therapeuticsfor COVID-19: Rapid prediction of commercially availabledrugs through machine learning and docking. PLoSONE, 15(11), e0241543. https://doi.org/10.1371/journal.pone.0241543

  67. Moridi, M., Ghadirinia, M., Sharifi-Zarchi, A. & Zare-Mirakabad, F. (2019). The assessment of efficientrepresentation of drug features using deep learning for drugrepositioning. BMC Bioinformatics, 20(1), 577. https://doi.org/10.1186/s12859-019-3165-y

  68. Morrow, J. K., Tian, L. & Zhang, S. (2010). Molecular networksin drug discovery. Critical ReviewsTM in BiomedicalEngineering, 38(2), 143–156. https://doi.org/10.1615/critrevbiomedeng.v38.i2.30

  69. Mugavin M. E. (2008). Multidimensional scaling: a briefoverview. Nursing Research, 57(1), 64–68. https://doi.org/10.1097/01.NNR.0000280659.88760.7c

  70. Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C.,Forghani, B. & Forghani, R. (2020). Brief history of artificialintelligence. Neuroimaging Clinics of North America,30(4), 393–399. https://doi.org/10.1016/j.nic.2020.07.004

  71. Napolitano, F., Zhao, Y., Moreira, V. M., Tagliaferri, R., Kere,J., D’Amato, M. & Greco, D. (2013). Drug repositioning:a machine-learning approach through data integration.Journal of Cheminformatics, 5(1), 30. https://doi.org/10.1186/1758-2946-5-30

  72. Ooi, C. P. & Lye, M. S. (2018). Bromocriptine for type 2 diabetesmellitus. The Cochrane Database of Systematic Reviews,2018(7), CD010319. https://doi.org/10.1002/14651858.CD010319.pub2

  73. Oprea, T. I., Bauman, J. E., Bologa, C. G., Buranda, T., Chigaev,A., Edwards, B. S., Jarvik, J. W., Gresham, H. D., Haynes,M. K., Hjelle, B., Hromas, R., Hudson, L., Mackenzie, D.A., Muller, C. Y., Reed, J. C., Simons, P. C., Smagley, Y.,Strouse, J., Surviladze, Z., Thompson, T., Ursu, O., Waller,A., Wandinger-Ness, A., Winter, S. S., Wu, Y., Young, S.M. Larson, R. S., Willman, C. & Sklar, L. A. (2011). DrugRepurposing from an Academic Perspective. Drug discoverytoday. Therapeutic Strategies, 8(3-4), 61–69. https://doi.org/10.1016/j.ddstr.2011.10.002

  74. Öztürk, H., Özgür, A., Schwaller, P., Laino, T. & Ozkirimli, E.(2020). Exploring chemical space using natural languageprocessing methodologies for drug discovery. DrugDiscovery Today, 25(4), 689–705. https://doi.org/10.1016/j.drudis.2020.01.020

  75. Parvathaneni, V., Kulkarni, N. S., Muth, A. & Gupta, V. (2019).Drug repurposing: a promising tool to accelerate thedrug discovery process. Drug Discovery Today, 24(10),2076–2085. https://doi.org/10.1016/j.drudis.2019.06.014

  76. Patel, L., Shukla, T., Huang, X., Ussery, D. W. & Wang, S.(2020). Machine learning methods in drug discovery.Molecules, 25(22), 5277. https://doi.org/10.3390/molecules25225277

  77. Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K. & Tekade,R. K. (2021). Artificial intelligence in drug discovery anddevelopment. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.10.010

  78. Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S.,Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee,C., Norris, A., Sanseau, P., Cavalla, D. & Pirmohamed,M. (2019). Drug repurposing: progress, challenges andrecommendations. Nature reviews Drug discovery, 18(1),41–58. https://doi.org/10.1038/nrd.2018.168

  79. Ramsay, R. R., Popovic-Nikolic, M. R., Nikolic, K., Uliassi, E.& Bolognesi, M. L. (2018). A perspective on multi-targetdrug discovery and design for complex diseases. Clinicaland Translational Medicine, 7(1), 3. https://doi.org/10.1186/s40169-017-0181-2

  80. Rattan, S. I. (2006). Theories of biological aging: genes,proteins, and free radicals. Free Radical Research, 40(12),1230–1238. https://doi.org/10.1080/10715760600911303

  81. Rudrapal, M., J. Khairnar, S. & G. Jadhav, A. (2020). Drugrepurposing (DR): an emerging approach in drug discovery.Drug Repurposing - Hypothesis, Molecular Aspects andTherapeutic Applications, 1(1). https://doi.org/10.5772/intechopen.93193

  82. Saeys, Y., Inza, I. & Larrañaga, P. (2007). A review of featureselection techniques in bioinformatics. Bioinformatics,23(19), 2507–2517. https://doi.org/10.1093/bioinformatics/btm344

  83. Saldívar-González, F. & Medina-Franco, J. (2021). Nuevos usosa medicamentos: el reposicionamiento de fármacos y suimportancia en crisis sanitarias. Entorno UAPAP, 14, 1-45.

  84. Saldívar-González, F., Prieto-Martínez, F. D. & Medina-Franco,J. L. (2017). Descubrimiento y desarrollo de fármacos: unenfoque computacional. Educación Química, 28(1), 51-58.https://doi.org/10.1016/j.eq.2016.06.002

  85. Schmidhuber, J. (2015). Deep learning in neural networks:an overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

  86. Sebastián-Pérez, V., Martínez, M. J., Gil, C., Campillo, N. E.,Martínez, A. & Ponzoni, I. (2019). QSAR modelling toidentify LRRK2 inhibitors for Parkinson’s disease. Journalof Integrative Bioinformatics, 16(1), 20180063. https://doi.org/10.1515/jib-2018-0063

  87. Sidey-Gibbons, J. A. M. & Sidey-Gibbons, C. J. (2019). Machinelearning in medicine: a practical introduction. BMC MedicalResearch Methodology, 19(1), 64. https://doi.org/10.1186/s12874-019-0681-4

  88. Sproule, B. A., Naranjo, C. A. & Türksen, I. B. (2002).Fuzzy pharmacology: theory and applications. Trends inPharmacological Sciences, 23(9), 412–417. https://doi.org/10.1016/s0165-6147(02)02055-2

  89. Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz,A., Donghia, N. M., MacNair, C. R., French, S., Carfrae,L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe,A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G.M., Brown, E. D., Jaakkola, T. S., Barzilay, R. & Collins, J.J. (2020). A deep learning approach to antibiotic discovery.Cell, 180(4), 688–702.e13. https://doi.org/10.1016/j.cell.2020.01.021

  90. Suay-Garcia, B., Falcó, A., Bueso-Bordils, J. I., Anton-Fos, G.M., Pérez-Gracia, M. T. & Alemán-López, P. A. (2020). TreebasedQSAR model for drug repurposing in the discoveryof new antibacterial compounds against Escherichia coli.Pharmaceuticals, 13(12), 431. https://doi.org/10.3390/ph13120431

  91. Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D.,Natoli, T. E., Lu, X., Gould, J., Davis, J. F., Tubelli, A.A., Asiedu, J. K., Lahr, D. L., Hirschman, J. E., Liu, Z.,Donahue, M., Julian, B., Khan, M., Wadden, D., Smith, I. C.,Lam, D., Liberzon, A., Toder, C., Bagul, M., Orzechowski,M., Enache, O. M., Piccioni, F., Johnson, S. A., Lyons, N.J., Berger, A. H., Shamji, A. F., Brooks, A.N., Vrcic, A.,Flynn, C., Rosains, J., Takeda, D.Y., Hu, R., Davison, D.,Lamb, J., Ardlie, K., Hogstrom, L., Greenside, P., Gray,N. S., Clemons, P. A., Silver, S., Wu, X., Zhao, W. N.,Read-Button, W., Wu, X., Haggarty, S. J., Ronco, L. V.,Boehm, J. S., Schreiber, S. L., Doench, J. G., Bittker, J.A., Root, D. E., Wong, B. & Golub, T. R. (2017). A NextGeneration Connectivity Map: L1000 Platform and the First1,000,000 Profiles. Cell, 171(6), 1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049

  92. Tanoli, Z., Vähä-Koskela, M. & Aittokallio, T. (2021).Artificial intelligence, machine learning, and drugrepurposing in cancer. Expert Opinion on Drug Discovery,16(9), 977–989. https://doi.org/10.1080/17460441.2021.1883585

  93. Thompson, P. L. (2019). Colchicine in cardiovascular disease:repurposing an ancient gout drug. Clinical Therapeutics,41(1), 8–10. https://doi.org/10.1016/j.clinthera.2018.11.014

  94. Udaondo, Z. & Matilla, M. A. (2020). Mining for novelantibiotics in the age of antimicrobial resistance.Microbial Biotechnology, 13(6), 1702–1704. https://doi.org/10.1111/1751-7915.13662

  95. Urbina, F., Puhl, A. C. & Ekins, S. (2021). Recent advances indrug repurposing using machine learning. Current Opinionin Chemical Biology, 65, 74–84. https://doi.org/10.1016/j.cbpa.2021.06.001

  96. Wang, X., Zhao, Y. & Pourpanah, F. Recent advances in deeplearning. International Journal of Machine Learning andCybernetics, 11, 747–750 (2020). https://doi.org/10.1007/s13042-020-01096-5

  97. Wei, X., Zhang, Y., Huang, Y. & Fang, Y. (2019). Predictingdrug–disease associations by network embedding andbiomedical data integration. Data Technologies andApplications, 53(2), 217-229. https://doi.org/10.1108/dta-01-2019-0004

  98. Wiffen, P. J., Derry, S., Bell, R. F., Rice, A. S. C., Tölle, T.R., Phillips, T. & Moore, R. A. (2017). Gabapentin forchronic neuropathic pain in adults. Cochrane Databaseof Systematic Reviews, 6(6), CD007938. https://doi.org/10.1002/14651858.CD007938.pub4

  99. Willett, P., Barnard, J. & Downs, G. M. (1998). Chemicalsimilarity searching. Journal of Chemical Informationand Computer Sciences, 38(6), 983-996. https://doi.org/10.1021/ci9800211

  100. Winkler, D. A. (2021). Use of artificial intelligence and machinelearning for discovery of drugs for neglected tropicaldiseases. Frontiers in Chemistry, 9, 614073. https://doi.org/10.3389/fchem.2021.614073

  101. Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu,A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda,Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A.,Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon,A., Knox, C. & Wilson, M. (2018). DrugBank 5.0: a majorupdate to the DrugBank database for 2018. Nucleic AcidsResearch, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037

  102. Xuan, P., Zhao, L., Zhang, T., Ye, Y. & Zhang, Y. (2019). Inferringdrug-related diseases based on convolutional neural networkand gated recurrent unit. Molecules, 24(15), 2712. https://doi.org/10.3390/molecules24152712

  103. Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R. & Cheng, F.(2019). deepDR: a network-based deep learning approachto in silico drug repositioning. Bioinformatics, 35(24),5191–5198. https://doi.org/10.1093/bioinformatics/btz418

  104. Zhang, W., Yue, X., Huang, F., Liu, R., Chen, Y. & Ruan, C.(2018). Predicting drug-disease associations and theirtherapeutic function based on the drug-disease associationbipartite network. Methods, 145, 51–59. https://doi.org/10.1016/j.ymeth.2018.06.001

  105. Zhao, K. & So, H. C. (2019). Drug repositioning forschizophrenia and depression/anxiety disorders: a machinelearning approach leveraging expression data. IEEE Journalof Biomedical and Health Informatics, 23(3), 1304–1315.https://doi.org/10.1109/JBHI.2018.2856535

  106. Zhou, Y., Wang, F., Tang, J., Nussinov, R. & Cheng, F. (2020).Artificial intelligence in COVID-19 drug repurposing.The Lancet. Digital Health, 2(12), e667–e676. https://doi.org/10.1016/S2589-7500(20)30192-8

  107. Zorn, K. M., Sun, S., McConnon, C. L., Ma, K., Chen, E. K.,Foil, D. H., Lane, T. R., Liu, L. J., El-Sakkary, N., Skinner,D. E., Ekins, S. & Caffrey, C. R. (2021). A machine learningstrategy for drug discovery identifies anti-schistosomalsmall molecules. ACS Infectious Diseases, 7(2), 406–420.https://doi.org/10.1021/acsinfecdis.0c00754




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25

ARTíCULOS SIMILARES

CARGANDO ...