medigraphic.com
ENGLISH

Revista Cubana de Endocrinología

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

Rev Cuba Endoc 2022; 33 (1)


El desafío para el desarrollo del sistema nervioso central en la reproducción humana asociada con la diabetes

Clapes HS, Fernández RT, Prado GK
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 49
Paginas:
Archivo PDF: 255.92 Kb.


PALABRAS CLAVE

diabetes, embarazo, neurodesarrollo, epigenética.

RESUMEN

Introducción: Los hijos de madres con diabetes presentan una mayor incidencia de trastornos del neurodesarrollo como autismo, actividad cognitiva baja, déficit de atención, esquizofrenia y otras enfermedades del espectro autista.
Objetivo: Explicar los mecanismos moleculares que subyacen en la aparición de los trastornos del neurodesarrollo en hijos de gestantes con diabetes.
Métodos: Se llevó a cabo una revisión de la literatura que aparece en las bases de datos electrónicas Google, MEDLINE/PubMed y SciELO. Se revisaron artículos publicados entre los años 2000 y 2020. Las palabras clave utilizadas fueron: hiperglucemia, neurodesarrollo, malformaciones congénitas y epigenética.
Resultados: Se pone de manifiesto el alto riesgo que representa la hiperglucemia durante el desarrollo intrauterino. El riesgo relativo que tienen los hijos de madres con diabetes pregestacional de presentar malformaciones del sistema nerviosos central es 15,5 veces mayor que en gestantes sin diabetes. El hipocampo es especialmente sensible a cambios en los niveles de glucosa. La diabetes materna puede dejar una impronta negativa para la capacidad de procesar información, adquirir habilidades y poseer un comportamiento social adecuado en la descendencia.
Conclusiones: Las alteraciones en el metabolismo condicionadas por la hiperglucemia, el estrés oxidativo, la inflamación de bajo grado y las modificaciones epigenéticas crean un fatal engranaje que sustenta el desarrollo anómalo en hijos de gestantes con diabetes.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Barker DJ. The fetal origins of coronary heart disease. European Heart J. 1997;18(6),883-4. DOI: https://doi.org/10.1093/oxfordjournals.eurheartj.a015368

  2. Mandy M, Nyirenda M. Developmental origins of health and disease: the relevance to developing nations. Internat Health. 2018;10(2):66-70. DOI: https://doi.org/10.1093/inthealth/ihy006FAO

  3. Salbaum JM, Kappen C. Diabetic embryopathy: A role for the epigenome? Birth Defects Res A Clin Mol Teratol. 2011;91(8):770-80. DOI: https://doi.org/10.1002/bdra.20807

  4. James Allan LB, Arbet J, Teal SB, Powell TL, Jansson T. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab. 2019;104(9):4225-38. DOI: https://doi.org/10.1210/jc.2018-02778

  5. Fraser A, Lawlor DA. Long-term health outcomes in offspring born to women with diabetes in pregnancy. Curr Diab Rep. 2014;14(5):489. DOI: https://doi.org/10.1007/s11892-014-0489-x

  6. Kappen C. Modeling anterior development in mice: Diet as modulator of risk for neural tube defects. Am J Med Genet C Semin Med Genet. 2015;0(4):333-56. DOI: https://doi.org/10.1002/ajmg.c.31380

  7. Kong L, Norstedt G, Schalling M, Gissler M, Lavebratt C. The risk of offspring psychiatric disorders in the setting of maternal obesity and diabetes. Pediatrics. 2018;142(3):e20180776. DOI: https://doi.org/10.1542/peds.2018-0776

  8. Guo D, Ju R, Zhou Q, Mao J, Tao H, Jing H, et al. Association of maternal diabetes with attention deficit/hyperactivity disorder (ADHD) in offspring: A meta-analysis and review. Diabet Research Clin Pract. 2020. DOI: https://doi.org/10.1016/j.diabres.2020.108269

  9. Edlow AG, Guedj F, Sverdlov D, Pennings JL, Bianchi DW. Significant effects of maternal diet during pregnancy on the murine fetal brain transcriptome and offspring behavior. Front Neurosci. 2019;13:1335. DOI: https://doi.org/10.3389/fnins.2019.01335

  10. Adane AA, Mishra GD, Tooth LR. Diabetes in pregnancy and childhood cognitive development: A systematic review. Pediatrics. 2016;137(5):e20154234. DOI: https://doi.org/10.1542/peds.2015-4234

  11. Cunnane SC, Crawford MA. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):17-26. DOI: https://doi.org/10.1016/s1095-6433(03)00048-5

  12. Duelli R, Kuschinsky W. Brain glucose transporters: Relationship to local energy demand. Physiology. 2001;16(2):71-6. DOI: https://doi.org/10.1152/physiologyonline.2001.16.2.71

  13. Shah K, De Silva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer's disease. Int J Mol Sci. 2012;13(10):12629-55. DOI: https://doi.org/10.3390/ijms131012629

  14. Battin M, Wouldes TA, Rowan J. Neurodevelopmental outcome in offspring born following gestational diabetes. Nutr Diet Maternal Diabetes. 2017;341-54. DOI: https://doi.org/10.1007/978-3-319-56440-1_27

  15. American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes 2018. Diabetes Care. 2018;41(Suppl. 1):S13-27. DOI: https://doi.org/10.2337/dc18-S002

  16. Oguntibeju O. Type 2 diabetes mellitus, oxidative stress and inflmmation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019 [acceso: 18/10/2021];15(3):45-63. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31333808/

  17. Armengaud JB, Simeoni U. Offspring of mothers with hyperglycemia in pregnancy: Short-term consequences for newborns and infants. Gestational Diabetes. 2019;28:194-200. DOI: https://doi.org/10.1159/000480175

  18. Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res C Embryo Today. 2015;105(1):53-72. DOI: https://doi.org/10.1002/bdrc.21090

  19. Eriksson UJ, Wentzel P. The status of diabetic embryopathy. Ups J Med Sci. 2016;121(2):96-112. DOI: https://doi.org/10.3109/03009734.2016.1165317

  20. Carpita B, Muti D, Dell'Osso L. Oxidative stress, maternal diabetes, and autism spectrum disorders. Oxid Med Cell Longev. 2018;3717215. DOI: https://doi.org/10.1155/2018/3717215

  21. Van Lieshout RJ, Voruganti LP. Medical subject headings: diabetes mellitus; schizophrenia; fetal hypoxia. J Psychiatry Neurosci. 2018 [acceso: 18/10/2021];33(5):395-404. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18787655/

  22. Wang X, Lu J, Xie W, Lu X, Liang Y, Li M, et al. Maternal diabetes induces autism-like behavior by hyperglycemia-mediated persistent oxidative stress and suppression of superoxide dismutase 2. Proc Natl Acad Sci USA. 2019:116(47):23743-52. DOI: https://doi.org/10.1073/pnas.1912625116

  23. Georgieff MK. Iron deficiency in pregnancy. Americ J Obstetric Gynecol. 2020. DOI: https://doi.org/10.1016/j.ajog.2020.03.006

  24. Verner AM, Manderson J, Lappin TRJ, McCance DR, Halliday HL, Sweet DG. Influence of maternal diabetes mellitus on fetal iron status. Arch Dis Child Fetal Neonatal Ed. 2007;92(5):399-401. DOI: https://doi.org/10.1136/adc.2006.097279

  25. Ya Jin, Guang Wang, Sha-sha Han, Mei-yao He, Xin Cheng, Zheng-lai Ma, et al. Effects of oxidative stress on hyperglycaemia induced brain malformations in a diabetes mouse model. Exp Cell Res. 2016:347(1);201-11. DOI: https://doi.org/10.1016/j.yexcr.2016.08.002

  26. Ter Braak EW, Evers IM, Erkelens DW, Visser GH. Maternal hypoglycemia during pregnancy in type 1 diabetes: maternal and fetal consequences. Diabetes Metab Res Rev. 2002;18(2):96-105. DOI: https://doi.org/10.1002/dmrr.271

  27. Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I. A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Res. 2013;2:151. DOI: https://doi.org/10.12688/f1000research.2-151.v1

  28. Pani L, Horal M, Loeken MR. Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3- dependent development and tumorigenesis. Genes Dev. 2002;16(6):676-80. DOI: https://doi.org/10.1101/gad.969302

  29. Loeken MR. Mechanisms of congenital malformations in pregnancies with preexisting diabetes defects. Current Diabetes Reports. 2020;20:54. DOI: https://doi.org/10.1007/s11892-020-01338-4

  30. Maiese K, Chong ZZ, Shang YC, Wang S. Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov. 2013;8(1):35-48. DOI: https://doi.org/10.1517/17460441.2013.736485

  31. Castori M. Diabetic embryopathy: A developmental perspective from fertilization to adulthood. Mol Syndromol. 2013;4(1-2):74-86. DOI: https://doi.org/10.1159/000345205

  32. Yessoufou A, Moutairou K. Maternal diabetes in pregnancy: Early and long-term outcomes on the offspring and the concept of "metabolic memory". Exp Diabetes Res. 2011;2011:1-12. DOI: https://doi.org/10.1155/2011/218598

  33. Camprubi M, Campoy C, García L, López Pedrosa JM, Rueda R, Martin MJ. Maternal diabetes and cognitive performance in the offspring: A systematic review and metaanalysis. PLoS One. 2015;10(11):e0142583. DOI: https://doi.org/10.1371/journal.pone.0142583

  34. Rizzo HE, Escaname EN, Alana NB, Lavender E, Gelfond J, Fernandez R, et al. Maternal diabetes and obesity influence the fetal epigenome in a largely Hispanic population. Clinical Epigenetics. 2020;12:1. DOI: https://doi.org/10.1186/s13148-020-0824

  35. Wei D, Loeken MR. Increased DNA Methyltransferase 3b (Dnmt3b)-mediated CpG island methylation stimulated by oxidative stress inhibits expression of a gene required for neural tube and neural crest development in diabetic pregnancy. Diabetes. 2014;63(10):3512-22. DOI: https://doi.org/10.2337/db14-0231

  36. Maiese K. New insights for oxidative stress and diabetes mellitus. Oxidative Med Cellular Longevity. 2015;1-17. DOI: https://doi.org/10.1155/2015/875961

  37. Kong L, Chen X, Gissler M, Lavebratt C. Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: a narrative review. Int J Obes (Lond). 2020. DOI: https://doi.org/10.1038/s41366-020-0609-4

  38. Li M, Francis E, Hinkle SN, Ajjarapu AS, Zhang C. Preconception and prenatal nutrition and neurodevelopmental disorders: A systematic review and metaanalysis. Nutrients. 2019;11(7):1628. DOI: https://doi.org/10.3390/nu11071628

  39. Villalobos Labra R, Silva L, Subiabre M, Araos J, Salsoso R, Fuenzalida B, et al. Akt/mTOR role in human foetoplacental vascular insulin resistance in diseases of pregnancy. J Diabetes Res. 2017;2017:5947859. DOI: https://doi.org/10.1155/2017/5947859

  40. Engineer A, Saiyin T, Greco ER, Feng Q. Say NO to ROS: Their roles in embryonic heart development and pathogenesis of congenital heart defects in maternal diabetes. Antioxidants (Basel). 2019;8(10):436. DOI: https://doi.org/10.3390/antiox8100436

  41. Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018;12:825. DOI: https://doi.org/10.3389/fnins.2018.00825

  42. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. DOI: https://doi.org/10.1038/s41574-018-0048-7

  43. Groen B, Links TP, van den Berg PP, de Vos P, Faas MM. The role of autoimmunity in women with type 1 diabetes and adverse pregnancy outcome: A missing link. Immunobiology. 2019;224(2):334-8. DOI: https://doi.org/10.1016/j.imbio.2019.02.003

  44. Cadaret CN, Posont RJ, Beede KA, Riley HE, Loy JD, Yates DT. Maternal inflammation at midgestation impairs subsequent fetal myoblast function and skeletal muscle growth in rats, resulting in intrauterine growth restriction at term. Transl Anim Sci. 2019;3(2):txz037. DOI: https://doi.org/10.1093/tas/txz037

  45. Larqué E, Pagán A, Prieto MT, Blanco JE, Gil Sánchez A, Zornoza Moreno, et al. Placental fatty acid transfer: A key factor in fetal growth. Ann Nutr Metab. 2014;64(3-4):247-53. DOI: https://doi.org/10.1159/000365028

  46. Correia B, Sousa MI, Ramalho Santos J. The mTOR pathway in reproduction from gonadal function to developmental coordination. Reproduction. 2020;159(4):R173-88. DOI: https://doi.org/10.1530/REP-19-0057

  47. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781-3. DOI: https://doi.org/10.1101/gad.178760

  48. Mayo de Andrés S. Búsqueda e identificación de nuevas causas genéticas o epigenéticas de trastornos del neurodesarrollo [Tesis Doctoral]. España: Universidad de Valencia; 2015.

  49. Kowluru R. Mohammad G. Epigenetic modifications in diabetes. Metabolism. 2022;126. DOI: https://doi.org/10.1016/j.metabol.2021.154920




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cuba Endoc. 2022;33

ARTíCULOS SIMILARES

CARGANDO ...