medigraphic.com
ENGLISH

Revista Cubana de Medicina Tropical

ISSN 1561-3054 (Digital)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

Rev Cubana Med Trop 2022; 74 (1)


Implicaciones de los virus Zika y Chikungunya en el semen durante la transmisión sexual

Montaño MVM, Mendez CYA, Montoya C, Urcuqui-Inchima S, Velilla PA, Cardona MWD
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 94
Paginas:
Archivo PDF: 465.65 Kb.


PALABRAS CLAVE

Zika, Chikungunya, virus, testículos, semen, persistencia, transmisión sexual.

RESUMEN

Introducción: Los brotes de enfermedades causados por los virus Zika (VZIK) y Chikungunya (VCHIK) representan un problema de salud pública para muchos países tropicales y subtropicales.
Objetivo: Discutir las implicaciones del hallazgo del VZIK y del VCHIK en el semen, y su relación con la transmisión sexual y la fertilidad masculina.
Métodos: Se realizó una revisión narrativa de la literatura usando artículos indexados en PubMed (Medline), Embase y Scopus.
Información, análisis y síntesis: Si bien los mosquitos del género Aedes son el vector principal y transmiten ambos virus, la transmisión sexual es una vía de infección significativa del VZIK y una posible ruta alterna para el VCHIK. La diseminación de estas arbovirosis vía linfática y sanguínea contribuye a la infección de diversos tejidos, incluyendo el tracto reproductivo masculino, donde el VZIK puede persistir. La infección de los testículos y quizás también de las glándulas accesorias del sistema reproductor masculino, se asocia con síntomas genitourinarios o alteraciones espermáticas, relacionadas con la detección del virus por largos periodos. Aunque no hay evidencia contundente sobre la presencia del VCHIK en el tracto genital masculino, se ha hallado en orina y semen. Además, se ha sugerido una posible persistencia en macrófagos que pueden infiltrar diferentes tejidos periféricos y cumplir una función de reservorio.
Conclusiones: Hay presencia y persistencia de los virus Zika y Chikungunya en el tracto reproductor masculino. La infección en el semen se asocia con la transmisión sexual del virus, y con la alteración en la producción y calidad de los espermatozoides, con consecuencias clínicas graves en la salud sexual y reproductiva de los hombres infectados.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Arredondo-García J, Méndez-Herrera A, Medina-Cortina H. Arbovirus in Latin America. Acta Pediátrica de México. 2016 [Acceso 04/04/2021];37(2):111-31. Disponible en: http://www.scielo.org.mx/pdf/apm/v37n2/2395-8235-apm-37-02-00111.pdf

  2. Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: Why today? One Health. 2017;4:1-13. DOI: https://doi.org/10.1016/j.onehlt.2017.06.001

  3. Álvarez Escobar MDC, Torres Álvarez A, Semper González AI, Romeo Almanza D. Dengue, chikungunya, Virus de Zika. Determinantes sociales. Rev Médica Electrónica. 2018 [Acceso 04/04/2021];40(1):120-8. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=79656

  4. Morens DM, Fauci AS. Chikungunya at the door-deja vu all over again? N Engl J Med. 2014;371(10):885-7. DOI: https://doi.org/10.1056/NEJMp1408509

  5. Espinal MA, Andrus JK, Jauregui B, Waterman SH, Morens DM, Santos JI, et al. Emerging and Reemerging Aedes-Transmitted Arbovirus Infections in the Region of the Americas: Implications for Health Policy. American Journal of Public Health. 2019;109(3):387-92. DOI: https://doi.org/10.2105/AJPH.2018.304849

  6. Segura NA, Muñoz AL, Losada-Barragán M, Torres O, Rodríguez AK, Rangel H, et al. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog Dis. 2021;79(7):ftab043. DOI: https://doi.org/10.1093/femspd/ftab043

  7. Wheeler AC, Ventura CV, Ridenour T, Toth D, Nobrega LL, Silva de Souza Dantas LC, et al. Skills attained by infants with congenital Zika syndrome: Pilot data from Brazil. PloS One. 2018;13(7):e0201495. DOI: https://doi.org/10.1371/journal.pone.0201495

  8. Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387(10027):1531-9. DOI: https://doi.org/10.1016/S0140-6736(16)00562-6

  9. Mehrjardi MZ, Shobeirian F. The role of the placenta in prenatally acquired Zika virus infection. Virus Disease. 2017;28(3):247-9. DOI: https://doi.org/10.1007/s13337-017-0399-z

  10. Manangeeswaran M, Kielczewski JL, Sen HN, Xu BC, Ireland DD, McWilliams IL, et al. ZIKA virus infection causes persistent chorioretinal lesions. Emerging Microbes & Infections. 2018;7(1):1-15. DOI: https://doi.org/10.1038/s41426-018-0096-z

  11. Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro Surveillance. 2016;21(32):30314. DOI: https://doi.org/10.2807/1560-7917.ES.2016.21.32.30314

  12. Mead PS, Duggal NK, Hook SA, Delorey M, Fischer M, Olzenak McGuire D, et al. Zika Virus Shedding in Semen of Symptomatic Infected Men. N Engl J Med. 2018;378(15):1377-85. DOI: https://doi.org/10.1056/NEJMoa1711038

  13. Khaiboullina SF, Ribeiro FM, Uppal T, Martynova EV, Rizvanov AA, Verma SC. Zika virus transmission through blood tissue barriers. Frontiers in Microbiology. 2019;10:1465. DOI: https://doi.org/10.3389/fmicb.2019.01465

  14. Paz-Bailey G, Rosenberg ES, Doyle K, Munoz-Jordan J, Santiago GA, Klein L, et al. Persistence of Zika Virus in Body Fluids - Final Report. N Engl J Med. 2018;379(13):1234-43. DOI: https://doi.org/10.1056/NEJMoa1613108

  15. Kumar A, Jovel J, Lopez-Orozco J, Limonta D, Airo AM, Hou S, et al. Human Sertoli cells support high levels of Zika virus replication and persistence. Sci Rep. 2018;8(1):5477. DOI: https://doi.org/10.1038/s41598-018-23899-x

  16. Freour T, Mirallie S, Hubert B, Splingart C, Barriere P, Maquart M, et al. Sexual transmission of Zika virus in an entirely asymptomatic couple returning from a Zika epidemic area, France, April 2016. Euro Surveill. 2016;21(23). DOI: https://doi.org/10.2807/1560-7917.ES.2016.21.23.30254

  17. D'Ortenzio E, Matheron S, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, et al. Evidence of sexual transmission of Zika virus. New England J Med. 2016;374(22):2195-8. DOI: https://doi.org/10.1056/NEJMc1604449

  18. McCarthy M. Zika virus was transmitted by sexual contact in Texas, health officials report. BMJ: British Medical Journal. 2016;352. DOI: https://doi.org/10.1136/bmj.i720

  19. Deckard DT, Chung WM, Brooks JT, Smith JC, Woldai S, Hennessey M, et al. Male-to-Male Sexual Transmission of Zika Virus -Texas, January 2016. MMWR Morb Mortal Wkly Rep. 2016;65(14):372-4. DOI: https://doi.org/10.15585/mmwr.mm6514a3

  20. Russell K, Hills SL, Oster AM, Porse CC, Danyluk G, Cone M, et al. Male-to-Female Sexual Transmission of Zika Virus-United States, January-April 2016. Clin Infect Dis. 2017;64(2):211-3. DOI: https://doi.org/10.1093/cid/ciw692

  21. Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, et al. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis. 2011;17(5):880-2. DOI: https://doi.org/10.3201/eid1705.101939

  22. Kurscheidt FA, Mesquita CSS, Damke G, Damke E, Carvalho A, Suehiro TT, et al. Persistence and clinical relevance of Zika virus in the male genital tract. Nat Rev Urol. 2019;16(4):211-30. DOI: https://doi.org/10.1038/s41585-019-0149-7

  23. Epelboin S, Dulioust E, Epelboin L, Benachi A, Merlet F, Patrat C. Zika virus and reproduction: facts, questions and current management. Hum Reprod Update. 2017;23(6):629-45. DOI: https://doi.org/10.1093/humupd/dmx024

  24. Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, et al. Zika virus infection damages the testes in mice. Nature. 2016;540(7633):438-42. DOI: https://doi.org/10.1038/nature20556

  25. Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell. 2016;167(6):1511-24. DOI: https://doi.org/10.1016/j.cell.2016.11.016

  26. Uraki R, Hwang J, Jurado KA, Householder S, Yockey LJ, Hastings AK, et al. Zika virus causes testicular atrophy. Sci Adv. 2017;3(2):e1602899. DOI: https://doi.org/10.1126/sciadv.1602899

  27. Matusali G, Houzet L, Satie AP, Mahe D, Aubry F, Couderc T, et al. Zika virus infects human testicular tissue and germ cells. J Clin Invest. 2018;128(10):4697-710. DOI: https://doi.org/10.1172/JCI121735

  28. Stassen L, Armitage CW, van der Heide DJ, Beagley KW, Frentiu FD. Zika Virus in the Male Reproductive Tract. Viruses. 2018;10(4):198. DOI: https://doi.org/10.3390/v10040198

  29. Mansuy J-M, El Costa H, Gouilly J, Mengelle C, Pasquier C, Martin-Blondel G, et al. Peripheral plasma and semen cytokine response to zika virus in humans. Emerging Infectious Diseases. 2019;25(4):823-825. DOI: https://doi.org/10.3201/eid2504.171886

  30. Rametse CL, Olivier AJ, Masson L, Barnabas S, McKinnon LR, Ngcapu S, et al. Role of semen in altering the balance between inflammation and tolerance in the female genital tract: does it contribute to HIV risk? Viral Immunology. 2014;27(5):200-6. DOI: https://doi.org/10.1089/vim.2013.0136

  31. Young AR, Locke MC, Cook LE, Hiller BE, Zhang R, Hedberg ML, et al. Dermal and muscle fibroblasts and skeletal myofibers survive chikungunya virus infection and harbor persistent RNA. PLoS Pathogens. 2019;15(8):e1007993. DOI: https://doi.org/10.1371/journal.ppat.1007993

  32. Chen W, Foo S-S, Sims NA, Herrero LJ, Walsh NC, Mahalingam S. Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends in Microbiology. 2015;23(1):35-43. DOI: https://doi.org/10.1016/j.tim.2014.09.005

  33. Bandeira AC, Campos GS, Rocha VF, Souza BS, Soares MB, Oliveira AA, et al. Prolonged shedding of Chikungunya virus in semen and urine: A new perspective for diagnosis and implications for transmission. ID Cases. 2016;6:100-3. DOI: https://doi.org/10.1016/j.idcr.2016.10.007

  34. Silva JVJ, Jr., Ludwig-Begall LF, Oliveira-Filho EF, Oliveira RAS, Duraes-Carvalho R, Lopes TRR, et al. A scoping review of Chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop. 2018;188:213-24. DOI: https://doi.org/10.1016/j.actatropica.2018.09.003

  35. Griswold MD. Spermatogenesis: the commitment to meiosis. Physiological Reviews. 2016;96(1):1-17. DOI: https://doi.org/10.1152/physrev.00013.2015

  36. Pérez CV, Theas MS, Jacobo PV, Jarazo-Dietrich S, Guazzone VA, Lustig L. Dual role of immune cells in the testis: Protective or pathogenic for germ cells? Spermatogenesis. 2013;3(1):e23870. DOI: https://doi.org/10.4161/spmg.23870

  37. Gimenes F, Souza RP, Bento JC, Teixeira JJ, Maria-Engler SS, Bonini MG, et al. Male infertility: a public health issue caused by sexually transmitted pathogens. Nature Reviews Urology. 2014;11(12):672. DOI: https://doi.org/10.1038/nrurol.2014.285

  38. Puerta-Suárez J, Giraldo M, Cadavid ÁP, Cardona-Maya W. Infecciones bacterianas del tracto reproductivo masculino y su papel en la fertilidad. Rev Chil Obstet Ginecol. 2014;79(3):209-17. DOI: http://dx.doi.org/10.4067/S0717-75262014000300010

  39. Zea-Mazo JW, Negrette-Mejia YA, Cardona-Maya W. Virus de transmisión sexual: relación semen y virus. Actas Urol Esp. 2010;34(10):845-53. DOI: https://doi.org/10.1016/j.acuro.2010.07.002

  40. Castrillón-Duque E, Cardona-Maya WD. Infecciones micóticas del tracto urogenital masculino, importantes aunque poco frecuentes: revisión sistemática. Medicina & Laboratorio. 2017;22(11-12):527-38. DOI: https://doi.org/10.36384/01232576.101

  41. Siemann DN, Strange DP, Maharaj PN, Shi PY, Verma S. Zika Virus Infects Human Sertoli Cells and Modulates the Integrity of the in vitro Blood-Testis Barrier Model. J Virol. 2017;91(22). DOI: https://doi.org/10.1128/JVI.00623-17

  42. Mlera L, Bloom ME. Differential Zika Virus Infection of Testicular Cell Lines. Viruses. 2019;11(1): 42. DOI: https://doi.org/10.3390/v11010042

  43. Zafar MI, Yu J, Li H. Implications of RNA Viruses in the Male Reproductive Tract: An Outlook on SARS-CoV-2. Front Microbiol. 2021;12:783963. DOI: https://doi.org/10.3389/fmicb.2021.783963

  44. Meinhardt A, Wang M, Schulz C, Bhushan S. Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukocyte Biology. 2018;104(4):757-66. DOI: https://doi.org/10.1002/JLB.3MR0318-086RR

  45. Osuna CE, Lim S-Y, Deleage C, Griffin BD, Stein D, Schroeder LT, et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nature Medicine. 2016;22(12):1448-55. DOI: https://doi.org/10.1038/nm.4206

  46. Spencer JL, Lahon A, Tran LL, Arya RP, Kneubehl AR, Vogt MB, et al. Replication of Zika virus in human prostate cells: A potential source of sexually transmitted virus. The J Infectious Diseases. 2018;217(4):538-47. DOI: https://doi.org/10.1093/infdis/jix436

  47. Halabi J, Jagger BW, Salazar V, Winkler ES, White JP, Humphrey PA, et al. Zika virus causes acute and chronic prostatitis in mice and macaques. J Infect Dis. 2020;221(9):1506-1517. DOI: https://doi.org/10.1093/infdis/jiz533

  48. Arsuaga M, Bujalance SG, Diaz-Menendez M, Vazquez A, Arribas JR. Probable sexual transmission of Zika virus from a vasectomized man. Lancet Infect Dis. 2016;16(10):1107. DOI: https://doi.org/10.1016/S1473-3099(16)30320-6

  49. Froeschl G, Huber K, von Sonnenburg F, Nothdurft H-D, Bretzel G, Hoelscher M, et al. Long-term kinetics of Zika virus RNA and antibodies in body fluids of a vasectomized traveller returning from Martinique: a case report. BMC Infectious Diseases. 2017;17(1):1-9. DOI: https://doi.org/10.1186/s12879-016-2123-9

  50. Clancy CS, Van Wettere AJ, Morrey JD, Julander JG. Zika Virus Associated Pathology and Antigen Presence in the Testicle in the Absence of Sexual Transmission During Subacute to Chronic Infection in a Mouse Model. Sci Rep. 2019;9(1):8325. DOI: https://doi.org/10.1038/s41598-019-44582-9

  51. Aiken WD, Anzinger JJ. Chikungunya Virus Infection and Acute Elevation of Serum Prostate-Specific Antigen. Case Reports in Urology. 2015;120535. DOI https://doi.org/10.1155/2015/120535

  52. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika Virus Infection in Human Skin Cells. J Virol. 2015;89(17):8880-96. DOI: https://doi.org/10.1128/JVI.00354-15

  53. Ojha CR, Rodriguez M, Lapierre J, Muthu Karuppan MK, Branscome H, Kashanchi F, et al. Complementary mechanisms potentially involved in the pathology of Zika virus. Frontiers in Immunology. 2018;9:2340. DOI: https://doi.org/10.3389/fimmu.2018.02340

  54. Meertens L, Labeau A, Dejarnac O, Cipriani S, Sinigaglia L, Bonnet-Madin L, et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Reports. 2017;18(2):324-33. DOI: https://doi.org/10.1016/j.celrep.2016.12.045

  55. Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP. Molecular biology, pathogenesis and pathology of mumps virus. The Journal of Pathology. 2015;235(2):242-52. DOI: https://doi.org/10.1002/path.4445

  56. da Silva LRC. Zika virus trafficking and interactions in the human male reproductive tract. Pathogens. 2018;7(2):51. DOI: https://doi.org/10.3390/pathogens7020051

  57. Robinson CL, Chong AC, Ashbrook AW, Jeng G, Jin J, Chen H, et al. Male germ cells support long-term propagation of Zika virus. Nature Communications. 2018;9(1):1-11. DOI https://doi.org/10.1038/s41467-018-04444-w

  58. Strange DP, Green R, Siemann DN, Gale M, Verma S. Immunoprofiles of human Sertoli cells infected with Zika virus reveals unique insights into host-pathogen crosstalk. Scientific Reports. 2018;8(1):1-15. DOI https://doi.org/10.1038/s41598-018-27027-7

  59. Strange DP, Jiyarom B, Pourhabibi Zarandi N, Xie X, Baker C, Sadri-Ardekani H, et al. Axl Promotes Zika Virus Entry and Modulates the Antiviral State of Human Sertoli Cells. mBio. 2019;10(4):e01372-19. DOI: https://doi.org/10.1128/mBio.01372-19

  60. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, et al. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host & Microbe. 2016;19(6):882-90. DOI: https://doi.org/10.1016/j.chom.2016.05.009

  61. Perry AK, Gang C, Zheng D, Hong T, Cheng G. The host type I interferon response to viral and bacterial infections. Cell Research. 2005;15(6):407-22. DOI: https://doi.org/10.1038/sj.cr.7290309

  62. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87-103. DOI: https://doi.org/10.1038/nri3787

  63. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, et al. A mouse model of Zika virus pathogenesis. Cell Host & Microbe. 2016;19(5):720-30. DOI: https://doi.org/10.1016/j.chom.2016.03.010

  64. Winkler CW, Myers LM, Woods TA, Messer RJ, Carmody AB, McNally KL, et al. Adaptive immune responses to Zika virus are important for controlling virus infection and preventing infection in brain and testes. The Journal of Immunology. 2017;198(9):3526-35. DOI: https://doi.org/10.4049/jimmunol.1601949

  65. Ryman KD, Klimstra WB. Host responses to alphavirus infection. Immunological Reviews. 2008;225(1):27-45. DOI: https://doi.org/10.1111/j.1600-065X.2008.00670.x

  66. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, et al. Characterization of reemerging chikungunya virus. PLoS Pathog. 2007;3(6):e89. DOI: https://doi.org/10.1371/journal.ppat.0030089

  67. Her Z, Malleret B, Chan M, Ong EK, Wong S-C, Kwek DJ, et al. Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. The Journal of Immunology. 2010;184(10):5903-13. DOI: https://doi.org/10.4049/jimmunol.0904181

  68. Valdés López JF, Velilla PA, Urcuqui-Inchima S. Chikungunya virus infection induces differential inflammatory and antiviral responses in human monocytes and monocyte-derived macrophages. Acta Tropica. 2020;211:105619. DOI: https://doi.org/10.1016/j.actatropica.2020.105619

  69. Hoarau J-J, Jaffar Bandjee M-C, Krejbich Trotot P, Das T, Li-Pat-Yuen G, Dassa B, et al. Persistent Chronic Inflammation and Infection by Chikungunya Arthritogenic Alphavirus in Spite of a Robust Host Immune Response. The Journal of Immunology. 2010;184(10):5914-27. DOI: https://doi.org/10.4049/jimmunol.0900255

  70. Amdekar S, Parashar D, Alagarasu K. Chikungunya virus-induced arthritis: role of host and viral factors in the pathogenesis. Viral Immunology. 2017;30(10):691-702. DOI: https://doi.org/10.1089/vim.2017.0052

  71. McEntire CRS, Song KW, McInnis RP, Rhee JY, Young M, Williams E, et al. Neurologic Manifestations of the World Health Organization's List of Pandemic and Epidemic Diseases. Front Neurol. 2021 Feb 22;12:634827. DOI: https://doi.org/10.3389/fneur.2021.634827

  72. Robin S, Ramful D, Le Seach F, Jaffar-Bandjee M-C, Rigou G, Alessandri J-L. Neurologic manifestations of pediatric chikungunya infection. Journal of Child Neurology. 2008;23(9):1028-35. DOI: https://doi.org/10.1177/0883073808314151

  73. Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4(2):e29. DOI: https://doi.org/10.1371/journal.ppat.0040029

  74. Lin T, Hu J, Wang D, Stocco DM. Interferon-? inhibits the steroidogenic acute regulatory protein messenger ribonucleic acid expression and protein levels in primary cultures of rat Leydig cells. Endocrinology. 1998;139(5):2217-22. DOI: https://doi.org/10.1210/endo.139.5.6006

  75. Li MW, Xia W, Mruk DD, Wang CQ, Yan HH, Siu MK, et al. Tumor necrosis factor alpha reversibly disrupts the blood-testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. J Endocrinol. 2006;190(2):313-29. DOI: https://doi.org/10.1677/joe.1.06781

  76. Perez CV, Sobarzo CM, Jacobo PV, Pellizzari EH, Cigorraga SB, Denduchis B, et al. Loss of occluding expression and impairment of blood-testis barrier permeability in rats with autoimmune orchitis: effect of interleukin 6 on Sertoli cell tight junctions. Biol Reprod. 2012;87(5):122. DOI: https://doi.org/10.1095/biolreprod.112.101709

  77. Kaur G, Wright K, Verma S, Haynes A, Dufour JM. The Good, the Bad and the Ugly of Testicular Immune Regulation: A Delicate Balance Between Immune Function and Immune Privilege. Adv Exp Med Biol. 2021;1288:21-47. DOI: https://doi.org/10.1007/978-3-030-77779-1_2

  78. Zhang H, Yin Y, Wang G, Liu Z, Liu L, Sun F. Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep. 2014;4:4260. DOI: https://doi.org/10.1038/srep04260

  79. Albrecht M, Ramsch R, Kohn FM, Schwarzer JU, Mayerhofer A. Isolation and cultivation of human testicular peritubular cells: a new model for the investigation of fibrotic processes in the human testis and male infertility. J Clin Endocrinol Metab. 2006;91(5):1956-60. DOI: https://doi.org/10.1210/jc.2005-2169

  80. Lokireddy S, Vemula S, Vadde R. Connective tissue metabolism in chikungunya patients. Virol J. 2008;5:31. DOI: https://doi.org/10.1186/1743-422X-5-31

  81. Huits R, de Smet B, Arien KK, Van Esbroeck M, Bottieau E, Cnops L. Zika virus in semen: a prospective cohort study of symptomatic travellers returning to Belgium. Bull World Health Organ. 2017;95(12):802-9. DOI: https://doi.org/10.2471/BLT.17.181370

  82. Reusken C, Pas S, Geurtsvan Kessel C, Mogling R, van Kampen J, Langerak T, et al. Longitudinal follow-up of Zika virus RNA in semen of a traveller returning from Barbados to the Netherlands with Zika virus disease, March 2016. Euro Surveill. 2016;21(23). DOI: https://doi.org/10.2807/1560-7917.ES.2016.21.23.30251

  83. Mansuy JM, Dutertre M, Mengelle C, Fourcade C, Marchou B, Delobel P, et al. Zika virus: high infectious viral load in semen, a new sexually transmitted pathogen? The Lancet Infectious Diseases. 2016;16(4):405. DOI: https://doi.org/10.1016/S1473-3099(16)00138-9

  84. Joguet G, Mansuy JM, Matusali G, Hamdi S, Walschaerts M, Pavili L, et al. Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study. Lancet Infect Dis. 2017;17(11):1200-8. DOI: https://doi.org/10.1016/S1473-3099(17)30444-9

  85. Barzon L, Percivalle E, Pacenti M, Rovida F, Zavattoni M, del Bravo P, et al. Virus and Antibody Dynamics in Travelers With Acute Zika Virus Infection. Clin Infect Dis. 2018;66(8):1173-80. DOI: https://doi.org/10.1093/cid/cix967

  86. Torres JR, Martinez N, Moros Z. Microhematospermia in acute Zika virus infection. Int J Infect Dis. 2016;51:127. DOI: https://doi.org/10.1016/j.ijid.2016.08.025

  87. Oliveira Souto I, Alejo-Cancho I, Gascon Brustenga J, Peiro Mestres A, Munoz Gutierrez J, Martinez Yoldi MJ. Persistence of Zika virus in semen 93 days after the onset of symptoms. Enferm Infecc Microbiol Clin. 2018;36(1):21-3. DOI https://doi.org/10.1016/j.eimc.2016.10.009

  88. El Sahly HM, Gorchakov R, Lai L, Natrajan MS, Patel SM, Atmar RL, et al. Clinical, Virologic, and Immunologic Characteristics of Zika Virus Infection in a Cohort of US Patients: Prolonged RNA Detection in Whole Blood. Open Forum Infect Dis. 2019;6(1):ofy352. DOI: https://doi.org/10.1093/ofid/ofy352

  89. Ding J, Shang X, Zhang Z, Jing H, Shao J, Fei Q, et al. FDA-approved medications that impair human spermatogenesis. Oncotarget. 2017;8(6):10714. DOI: https://doi.org/10.18632/oncotarget.12956

  90. Medina FA, Torres G, Acevedo J, Fonseca S, Casiano L, de León-Rodríguez CM, et al. Duration of the presence of infectious Zika virus in semen and serum. The Journal of Infectious Diseases. 2019;219(1):31-40. DOI: https://doi.org/10.1093/infdis/jiy462

  91. Müller JA, Harms M, Krüger F, Groß R, Joas S, Hayn M, et al. Semen inhibits Zika virus infection of cells and tissues from the anogenital region. Nature Communications. 2018;9(1):1-14. DOI: https://doi.org/10.1038/s41467-018-04442-y

  92. Wang R, Gornalusse GG, Kim Y, Pandey U, Hladik F, Vojtech L. Potent Restriction of Sexual Zika Virus Infection by the Lipid Fraction of Extracellular Vesicles in Semen. Frontiers in Microbiology. 2020;11:2391. DOI: https://doi.org/10.3389/fmicb.2020.574054

  93. Liew CH. The first case of sexual transmission of dengue in Spain. J Travel Med. 2020;27(1):taz087. DOI: https://doi.org/10.1093/jtm/taz087

  94. Organización Mundial de la Salud. Prevención de la posible transmisión sexual del virus Zika. 2020 [Acceso 04/04/2021]. Disponible en: https://www.who.int/csr/resources/publications/zika/sexual-transmission-prevention/es/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Med Trop. 2022;74

ARTíCULOS SIMILARES

CARGANDO ...