medigraphic.com
ENGLISH

Revista Cubana de Reumatología

ISSN 1817-5996 (Digital)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

Rev Cub de Reu 2022; 24 (1)


Enfoques terapéuticos de la osteoporosis

Guevara AÁL, Ramos VWY, Guevara LDA, Pino FPE
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 37
Paginas:
Archivo PDF: 372.63 Kb.


PALABRAS CLAVE

osteoporosis, prevención primaria, prevención secundaria de fracturas, ranelato de estroncio.

RESUMEN

La finalidad del tratamiento de la osteoporosis es la prevención primaria y secundaria de fracturas. Las indicaciones para las intervenciones terapéuticas en la osteoporosis deben derivarse de la determinación del riesgo absoluto de fractura, que tiene en cuenta la evaluación de los factores de riesgo y la densidad ósea. El propósito de este estudio es comentar algunos enfoques terapéuticos empleados en la osteoporosis, destacando el mecanismo de acción del ranelato de estroncio que aumenta la formación de hueso y disminuye la resorción. La causa más común de osteoporosis en las mujeres es la disminución de los niveles de estrógeno durante la menopausia, lo que lleva a un aumento significativo en el recambio de masa ósea y el consiguiente desequilibrio entre la formación y reabsorción ósea con un aumento de la pérdida ósea y el deterioro de la estructura y fuerza óseas. El ranelato de estroncio sigue siendo una opción farmacológica eficaz y viable en la prevención de las fracturas vertebrales y del cuello femoral en mujeres posmenopáusicas y hombres adultos con osteoporosis, en cuanto a indicaciones, contraindicaciones y una cuidadosa evaluación de sus efectos y riesgos. Representa una alternativa a los medicamentos antirresortivos en caso de contraindicación, intolerancia o fracaso.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. González J, Riancho JA. Osteoporosis. Concepto. Epidemiología. Etiología. Manifestaciones clínicas y complicaciones. Medicine. 2006 [Acceso 14/08/2021];9(60):3873-9. Disponible en: https://www.sciencedirect.com/science/article/pii/S0211344906743454?via%3Dihub

  2. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2012 [Acceso 14/08/2021];359(9319):1761-7. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0140673602086579

  3. Kanis JA, Johnell O, Oden A, De Laet C, Jonsson B, Dawson A. Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone. 2002 [Acceso 14/08/2021];30(1):251-8. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S8756328201006536

  4. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013 [Acceso 14/08/2021];24:23-57. Disponible en: https://archive-ouverte.unige.ch/files/downloads/0/0/0/3/3/6/5/3/unige_33653_attachment01.pdf

  5. Marie PJ, Felsenberg D, Brandi M. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporosis Int. 2011 [Acceso 14/08/2021];22:1659-67. Disponible en: https://link.springer.com/article/10.1007/s00198-010-1369-0

  6. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaSR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol. 2007 [Acceso 14/08/2021];74(3):438-47. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006295207002602

  7. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, et al. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem. 2009 [Acceso 14/08/2021];284(1):575-84. Disponible en: https://www.jbc.org/article/S0021-9258(20)68347-8/fulltext

  8. Atkins GJ, Welldon KJ, Halbout P, Findlay DM. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int. 2009 [Acceso 14/08/2021];20:653-64. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0728-6

  9. Fromigué O, Haÿ E, Barbara A, Marie PJ. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem. 2010 [Acceso 14/08/2021];285(33):25251-8. Disponible en: https://www.jbc.org/article/S0021-9258(20)59909-2/fulltext

  10. Geoffroy V, Chappard D, Marty C, Libouban H, Ostertag A, Lalande A, et al. Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture. Osteoporos. 2011 [Acceso 14/08/2021];22:289-97. Disponible en: https://link.springer.com/article/10.1007/s00198-010-1193-6

  11. Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int. 2009 [Acceso 14/08/2021];20:1417-28. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0815-8

  12. Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, et al. Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int. 2008 [Acceso 14/08/2021];19:1331-41. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0602-6

  13. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis, Treatment of Peripheral Osteoporosis study. J Clin Endocrinol Metab. 2005 [Acceso 14/08/2021];90(5):2816-22. Disponible en: https://academic.oup.com/jcem/article/90/5/2816/2836859?login=true

  14. Kaufman JM, Audran M, Bianchi G, Braga V, Diaz-Curiel M, Francis RM, et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab. 2013 [Acceso 14/08/2021];98(2):592-601. Disponible en: https://academic.oup.com/jcem/article-abstract/98/2/592/2833105

  15. Reginster JY, Bruyère O, Sawicki A, Roces-Varela A, Fardellone P. Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone. 2009 [Acceso 14/08/2021];45(6):1059-64. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S875632820901816X

  16. Bruyère O, Roux C, Badurski J, Isaia G, de Vernejoul MC. Relationship between change in femoral neck bone mineral density and hip fracture incidence during treatment with strontium ranelate. Curr Med Res Opin. 2007 [Acceso 14/08/2021];23:3041-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17967221/

  17. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Sppector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004 [Acceso 14/08/2021];350:459-68. Disponible en: https://www.nejm.org/doi/full/10.1056/NEJMoa022436

  18. Bruyère O, Collette J, Reginster JY. Strontium ranelate uncouples bone resorption from bone formation in osteoporotic patients with or without clinical risk factors. Arthritis Rheum. 2013;65:S521.

  19. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009 [Acceso 14/08/2021];157(7):1291-300. Disponible en: https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/j.1476-5381.2009.00305.x

  20. Arlot ME, Jiang Y, Genant HK, Zhao J, Burt-Pichat B, Roux JP, et al. Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res. 2008 [Acceso 14/08/2021];23(2):215-22. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/abs/10.1359/jbmr.071012

  21. Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int. 2012 [Acceso 14/08/2021];23:305-5. Disponible en: https://link.springer.com/article/10.1007/s00198-011-1758-z

  22. Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R. Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women: randomized comparison to alendronate. J Bone Miner Res. 2014 [Acceso 14/08/2021];29(3):618-28. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/full/10.1002/jbmr.2074

  23. Ammann P, Rizzoli R. Strontium ranelate treatment improves bone material level properties in human transiliac bone biopsy specimens. Bone Abstract. 2013 [Acceso 14/08/2021];1:S43. Disponible en: http://www.bone-abstracts.org/ba/0001/ba0001PP53.htm

  24. Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: Results of a five-year, randomized, placebo-controlled trial. Arthritis. 2008 [Acceso 14/08/2021];58(6):1687-95. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/art.23461

  25. Reginster JY, Kaufman JM, Goemaere S, Devogelaer JP, Benhamou CL, Felsenberg D, et al. Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int. 2012 [Acceso 14/08/2021];23:1115-22. Disponible en: https://link.springer.com/article/10.1007/s00198-011-1847-z

  26. Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, et al. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int. 2009 [Acceso 14/08/2021];20:1663-73. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0825-6

  27. Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z, et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res. 2006 [Acceso 14/08/2021];21(4):536-42. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/full/10.1359/jbmr.060101

  28. Seeman E, Boonen S, Borgström F, Vellas B, Aquino JP, Semler J, et al. Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone. 2010 [Acceso 14/08/2021];46(4):1038-42. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S8756328209020985

  29. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001 [Acceso 14/08/2021];56(3):M146-56. Disponible en: https://academic.oup.com/biomedgerontology/article-abstract/56/3/M146/545770

  30. Marquis P, Roux C, de la Loge C, Diaz-Curiel M, Cormier C, Isaia G, et al. Strontium ranelate prevents quality of life impairment in post-menopausal women with established vertebral osteoporosis. Osteoporos Int. 2008 [Acceso 14/08/2021];19:503-10. Disponible en: https://link.springer.com/article/10.1007/s00198-007-0464-3

  31. Brun LR, Galich AM, Vega E, Salerni H, Maffei L, Premrou, et al. Strontium ranelate effect on bone mineral density is modified by previous bisphosphonate treatment. Springer-Plus. 2014 [Acceso 14/08/2021];3(676). Disponible en: https://springerplus.springeropen.com/articles/10.1186/2193-1801-3-676

  32. Busse B, Jobke B, Hahn M, Priemel M, Niecke M, Seitz S, et al. Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: Matrix incorporation of strontium is accompanied by changes in mineralization and microstructure. Acta Biomater. 2010 [Acceso 14/08/2021];6(12):4513-21. Disponible en: https://www.sciencedirect.com/science/article/pii/S1742706110003399

  33. Jobke B, Burghardt AJ, Muche B, Hahn M, Semler J, Amling M, et al. Trabecular reorganization in consecutive iliac crest biopsies when switching from bisphosphonate to strontium ranelate treatment. PLoS One. 2011 [Acceso 14/08/2021];6(8):e23638. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023638

  34. European Medicines Agency. Good pharmacovigilance practices. 2020 [Acceso 27/08/2021]. Disponible: https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/good-pharmacovigilance-practices

  35. European Medicines Agency. Assessment report - periodic safety update report (EPAR - Protelos-H-C-560-PSU31). 2013. [Acceso 27/08/2021]. Disponible en: https://www.ema.europa.eu/en/documents/variation-report/protelos-h-c-560-psu-0031-epar-assessment-report-periodic-safety-update-report_en.pdf

  36. Audran M, Jakob FJ, Palacios S, Brandi ML, Bröll H, Hamdy NA, et al. A large prospective European cohort study of patients treated with strontium ranelate and followed up over 3 years. Rheumatol Int. 2013 [Acceso 14/08/2021];33:2231-9. Disponible en: https://link.springer.com/article/10.1007%2Fs00296-012-2594-y

  37. Svanström H, Pasternak B, Hviid A. Use of strontium ranelate and risk of acute coronary syndrome: cohort study. Ann Rheum Dis. 2014 [Acceso 14/08/2021];73(6):1037-43. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24651624/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub de Reu. 2022;24

ARTíCULOS SIMILARES

CARGANDO ...