medigraphic.com
ENGLISH

Revista de Ciencias Médicas de Pinar del Río

ISSN 1561-3194 (Digital)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

Rev Ciencias Médicas 2022; 26 (1)


Fisiopatología de la lesión endotelial y las alteraciones de la coagulación en pacientes con COVID 19

León-García M, Hernández-Rodríguez Y, Vento-Pérez RA
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 29
Paginas: 1-12
Archivo PDF: 270.05 Kb.


PALABRAS CLAVE

sars-cov-2, covid-19, coronavirus, endotelial, coagulopatías, periodo de incubación de enfermedades infecciosas, enfermedades transmisibles.

RESUMEN

Introducción: la infección por SARS-CoV-2 puede inducir con frecuencia lesión endotelial y alteraciones de la coagulación, lo que ha llevado a estudiosos del tema a plantear que los signos y síntomas provocados por este virus se asemejan al fenotipo clínico de la disfunción endotelial.
Objetivo: describir los mecanismos fisiopatológicos involucrados en la lesión endotelial y las alteraciones de la coagulación, en pacientes con COVID-19.
Métodos: se realizó una revisión bibliográfica, mediante artículos recuperados en SciELO, PubMed, Ebsco y Springer. Se emplearon 30 referencias.
Desarrollo: diferentes mecanismos fisiopatológicos se asocian a la lesión endotelial y las alteraciones de la coagulación en los pacientes afectados por el SARS-CoV-2, ya sea por la acción directa del virus sobre las células endoteliales y/o la excesiva respuesta inflamatoria inducida por el mismo.
Conclusiones: los mecanismos fisiopatológicos involucrados en la lesión endotelial y las alteraciones de la coagulación, en los pacientes con COVID-19, son variados, compartiendo como factor común la tormenta de citoquinas proinflamatorias y condicionando la propia lesión del endotelio unido a otros factores, la aparición de trombopatías que comprometen la evolución del paciente.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Alves Cunha A, Quispe Cornejo A, Ávila Hilari A, Valdivia Cayoja A, Chino Mendoza J, Vera Carrasco O. Breve historia y fisiopatología del COVID-19. Revista "Cuadernos"[Internet]. 2020 [Citado: 10/12/2020]; 61(1): 130-143. Disponible en: Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1652-67762020000100011

  2. Rozadoa J, Ayestaa A, Morísa C, Avanzas P. Fisiopatología de la enfermedad cardiovascular en pacientes con COVID-19. Isquemia, trombosis y disfunción cardiaca. Rev Esp Cardiol Supl [Internet]. 2020 [Citado: 10/12/2020]; 20(E):2-8. Disponible en: Disponible en: https://www.revespcardiol.org/es-fisiopatologia-enfermedad-cardiovascular-pacientes-con-articulo-S1131358720300285

  3. OPS/OMS. Actualización epidemiológica: Enfermedad por Coronavirus (COVID-19) [Internet]. Washington, D.C:Organización Panamericana de la Salud / Organización Mundial de la Salud; 2021 [Citado: 11/03/2021]; Disponile en: Disponile en: https://www.paho.org/es/documentos/actualizacion-epidemiologica-enfermedad-por-coronavirus-covid-19-9-febrero-2021

  4. MINSAP. Actualización de la situación de la Covid-19 en Cuba [Internet]. MINSAP; 2021 [Citado: 11/03/2021]. Disponile en: Disponile en: https://salud.msp.gob.cu/parte-de-cierre-del-dia-27-de-marzo-a-las-12-de-la-noche/

  5. Lukassen S, Chua R, Trefzer T, Kahn N, Schneider M, Muley T. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J[Internet]. 2020 [Citado: 11/03/2021]; 39(10): e105114. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32246845/

  6. Pastrian Soto G. Presencia y Expresión del Receptor ACE2 (Target de SARS-CoV-2) en Tejidos Humanos y Cavidad Oral. Posibles Rutas de Infección en Órganos Orales. Int. J. Odontostomat [Internet]. 2020 [Citado: 11/03/2021]; 14(4): 501-507. Disponible en: Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-381X2020000400501

  7. Cano F, Gajardo M, Freundlich M. Eje Renina Angiotensina, Enzima Convertidora de Angiotensina 2 y Coronavirus. Rev. chil. Pediatr [Internet]. 2020 [Citado: 11/03/2021]; 91(3): 330-338. Disponible en: Disponible en: https://www.revistachilenadepediatria.cl/index.php/rchped/article/view/2548

  8. Abarca Rozas B, Vargas Urra J, García Garzón J. Caracterización patogénica, clínica y diagnóstica de la pandemia por SARS-CoV-2. Rev. chil. Infectol [Internet]. 2020 [Citado: 11/03/2021]; 37(3): 265-275. Disponile en: Disponile en: https://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0716-10182020000300265&lng=es&nrm=iso

  9. Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res[Internet]. 2020 [Citado: 11/03/2021]; 30(5): 367-369. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32346073/

  10. Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Review [internet]. 2021 [Citado: 11/03/2021]; 44(1): 13-34. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/33029758/

  11. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin [Internet]. 2020 [Citado: 11/03/2021]; 35: 266-271. Disponible en: Disponible en: https://link.springer.com/article/10.1007/s12250-020-00207-4

  12. Carvajal Carvajal C. El endotelio: estructura, función y disfunción endotelial / The endothelium: structure, function and endothelial dysfunction. Med. leg. Costa Rica [Internet]. 2017 [Citado: 11/03/2021]; 34(2): 90-100. Disponible en: Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152017000200090

  13. Becker R. COVID-19 update: Covid-19-associated coagulopathy. Journal of Thrombosis and Thrombolysis [Internet]. 2020 [Citado: 11/03/2021]; 50: 54-67. Disponible en: Disponible en: https://link.springer.com/article/10.1007/s11239-020-02134-3

  14. Contreras Domínguez V. Función y disfunción endotelial. Revista Mexicana de Anestesiología [Internet]. 2004 [Citado: 11/03/2021]; 27(1): 124-125. Disponible en: Disponible en: https://www.medigraphic.com/pdfs/rma/cma-2004/cmas041z.pdf

  15. Gavriilaki E, Anyfanti P, Gavriilaki M, Lazaridis A. Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Curr Hypertens Rep [Internet]. 2020 [Citado: 11/03/2021]; 22(63). Disponible en: Disponible en: https://link.springer.com/article/10.1007/s11906-020-01078-6

  16. Bérangère J, Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. [Internet]. 2020 [Citado: 04/02/2021]; 46(8): 1603-1606. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32415314/

  17. Sharma A, Garcia G, Arumugaswami V, Svendsen C. Human iPSC-derived cardiomyocytes are sus-ceptible to SARS-CoV-2 infection. BioRxiv [Internet]. 2020 [Citado: 04/02/2021]; Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263549/

  18. Chatterjee V, Yang X, Ma Y, Cha B, Meegan J, Wu M, et al. Endothelial microvesicles carrying Src-rich cargo impair adherens junction integrity and cytoskeleton homeostasis. Cardio-vasc Res[Internet]. 2020 [Citado: 04/02/2021]; 116(8): 1525-1538. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/31504252/

  19. Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell Death Dis [Internet]. 2017 [Citado: 04/02/2021]; 8. Disponible en: Disponible en: https://www.nature.com/articles/cddis201752

  20. Magro C, Mulvey J, Berlin D, Nuovo G, Salvatore S, Harp J. Complement associated mi-crovascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res [Internet]. 2020 [Citado: 04/02/2021]; 220: 1-13. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32299776/

  21. Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, et al. Immune cell profling of COVID-19 patients in the recovery stageby single-cell sequencing. Cell Discov [Internet]. 2020 [Citado: 04/02/2021]; 6(31). Disponible en: Disponible en: https://www.nature.com/articles/s41421-020-0168-9

  22. Helms J, Tacquard C, Severac F. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med [Internet]. 2020 [Citado: 04/02/2021]; 46(6): 1089-1098. Disponible en: Disponible en: https://europepmc.org/article/med/32367170

  23. Gavriilaki E, Sakellari I, Gavriilaki M, Anagnostopoulos A. Thrombocytopenia in COVID-19: pathophysiology matters. Annals of Hematology [Internet]. 2020 [Citado: 04/02/2021]: 1-2. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368623/

  24. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patien tsinfected with SA RS- CoV- 2. Cardiovasc Res[Internet]. 2020 [Citado: 04/02/2021]; 116(6): 1097-1100. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32227090/

  25. Ikewaki N, Sharaf Rao K, Durant Archibold A, Iwasaki M, Senthilkumar R. Coagulopathy associated with COVID-19 - Perspectives & Preventive strategies using a biological response modifier Glucan. Thrombosis Journal [Internet]. 2020 [Citado: 04/02/2021]; 18(27). Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/33082714/

  26. Carrillo Esper R, González Salazar J. Inflamación-endotelio-coagulación en sepsis.Conceptos actuales. Cir Ciruj[Internet]. 2002 [Citado: 04/02/2021]; 70(6): 433-441. Disponible en: Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=3251

  27. Asakura H, Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular. International Journal of Hematology [Internet]. 2020 [Citado: 04/02/2021]; 113: 45-57. Dispoinible en: Dispoinible en: https://www.x-mol.com/paper/1325953303421620224

  28. Whyte C, Morrow G. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost [Internet]. 2020 [Citado: 04/02/2021]; 18(7): 1548-1555. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262152/

  29. Duboscq C. El sistema plasminógeno plasmina. Hematología [Internet]. 2017 [Citado: 04/02/2021]; 21: 48-55. Disponible en: Disponible en: www.sah.org.ar/revista/numeros/vol21/extra/10-Vol%2021-extra.pdf




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Ciencias Médicas. 2022;26

ARTíCULOS SIMILARES

CARGANDO ...