medigraphic.com
ENGLISH

Revista Salud Pública y Nutrición

Coordinación General de Investigación de la Facultad de Salud Pública y Nutrición y la Dirección General de Sistemas e Informática de la Universidad Autónoma de Nuevo León
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2024, Número 2

<< Anterior

Rev Salud Publica Nutr 2024; 23 (2)


Una revisión de estudios experimentales sobre hepatotoxicidad relacionada a la exposición por acrilamida

Martínez-Ortiz MG, García-Palafox LC, Martínez-Toto Á, Ruíz-Ramos R, Sánchez-Otero MG
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 49
Paginas: 35-46
Archivo PDF: 440.80 Kb.


PALABRAS CLAVE

Hígado, Toxicidad, Acrilamida, Estrés oxidativo, Wistar rat.

RESUMEN

Introducción: La acrilamida es un compuesto tóxico que puede formarse en alimentos preparados a altas temperaturas, en exposición crónica provoca neurotoxicidad, genotoxicidad, y puede ser carcinógena. El hígado es el principal encargado de su metabolismo, la acrilamida y sus metabolitos pueden producir daños e inflamación crónica hepática que pueden desencadenar patologías graves.
Objetivo: Analizar la información más reciente con relación a la hepatotoxicidad asociada a la ingesta de acrilamida.
Material y Método: Se realizó una revisión hemerográfica en PubMed, ScienceDirect y Google Académico, utilizando términos MeSH: liver, toxicity, acrylamide, oxidative stress, Wistar Rat y Booleanos: “and”, “or”, “not” considerando artículos a partir del 2018, seleccionando los que describieran en su contenido datos relacionados las palabras clave.
Resultados: La hepatotoxicidad por exposición a acrilamida está relacionada a alteraciones de biomarcadores de estrés oxidativo, cambios en metabolómica y en procesos de autofagia, activación del inflamasoma, y modificaciones estereológicas e histológicas.
Conclusión: La información actualizada demuestra que a la hepatotoxicidad asociada a acrilamida le subyacen diversos mecanismos celulares en los que generalmente está involucrado el estrés oxidativo, por ello el abordaje de estrategias para entender y disminuir el impacto de la exposición debe considerar dichos aspectos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abdelmegeed, M. A., Ha, S.-K., Choi, Y., Akbar, M., &Song, B.-J. (2017). Role of CYP2E1 in mitochondrialdysfunction and hepatic tissue injury in alcoholic andnon-alcoholic diseases. Current molecularpharmacology, 10(3), 207.https://doi.org/10.2174/1874467208666150817111114

  2. Ali, A. H. S. A., Ibrahim, R., Ahmed, A., & Talaat, E.(2020). Histological study of toxic effects ofacrylamide on the liver and kidney of adult male albinorats. El-Minia Medical Bulletin, 31(3), 345-350.https://doi.org/10.21608/mjmr.2022.220316

  3. Banc, R., Popa, D. S., Cozma-Petruţ, A., Filip, L., Kiss, B.,Fărcaş, A., Nagy, A., Miere, D., & Loghin, F. (2022).Protective Effects of Wine Polyphenols on OxidativeStress and Hepatotoxicity Induced by Acrylamide inRats. Antioxidants, 11(7), 1347.https://doi.org/10.3390/ANTIOX11071347/S1

  4. Belhadj Benziane, A., Dilmi Bouras, A., Mezaini, A.,Belhadri, A., & Benali, M. (2018). Effect of oralexposure to acrylamide on biochemical andhematologic parameters in Wistar rats. Drug andChemical Toxicology 42(2), 157–166.https://doi.org/10.1080/01480545.2018.1450882

  5. Benford, D., Ceccatelli, S., Cottrill, B., DiNovi, M.,Dogliotti, E., Edler, L., Farmer, P., Fürst, P.,Hoogenboom, L., Katrine Knutsen, H., Lundebye, A.-K., Metzler, M., Mutti, A., Schouten, L. J., Schrenk,D., & Vleminckx, C. (2015). Scientific Opinion onacrylamide in food. EFSA Journal, 13(6), 4104.https://doi.org/10.2903/J.EFSA.2015.4104

  6. Bo, N., Yilin, H., Chaoyue, Y., Lu, L., & Yuan, Y. (2020).Acrylamide induces NLRP3 inflammasome activationvia oxidative stress- and endoplasmic reticulum stressmediated MAPK pathway in HepG2 cells. Food andChemical Toxicology: An International JournalPublished for the British Industrial BiologicalResearch Association, 145.https://doi.org/10.1016/J.FCT.2020.111679

  7. Cao, C., Shi, H., Zhang, M., Bo, L., Hu, L., Li, S., Chen,S., Jia, S., Liu, Y. J., Liu, Y. L., Zhao, X., & Zhang, L.(2018). Metabonomic analysis of toxic action of longtermlow-level exposure to acrylamide in rat serum.Human & Experimental Toxicology, 37(12), 1282–1292. https://doi.org/10.1177/0960327118769708

  8. Centurión, J. R., Galeano, A. K., Kennedy, M. L.,Campuzano-Bublitz, M. A., Centurión, J. R., Galeano,A. K., Kennedy, M. L., & Campuzano-Bublitz, M. A.(2022). Modelos murinos utilizados en la investigaciónde la Diabetes mellitus. Revista CON-CIENCIA, 10(2),53–68.https://doi.org/10.53287/EEEH2318FN45V

  9. Contreras-Romo, P. S. (2021). Manual para el manejoadecuado de animales de laboratorio. En UniversidadVeracruzana (1a ed.). Universidad Veracruzana.https://libros.uv.mx/index.php/UV/catalog/download/FC296/1604/2657-1?inline=1

  10. Dasari, S., Gonuguntla, S., Yellanurkonda, P., Nagarajan,P., & Meriga, B. (2019). Sensitivity of glutathione Stransferasesto high doses of acrylamide in albinowistar rats: Affinity purification, biochemicalcharacterization and expression analysis.Ecotoxicology and Environmental Safety, 182, 109416.https://doi.org/10.1016/J.ECOENV.2019.109416

  11. Dasari, S., Ganjayi, M. S., Gonuguntla, S., Kothapalli, S.R., Konda, P. Y., Basha, S. K. M., Peera, K., & Meriga,B. (2018). Evaluation of biomarkers distress inAcrylamide-Induced hepatic and nephrotoxicity ofalbino wistar Rat. Advances in Animal and VeterinarySciences, 6(10).https://doi.org/10.17582/journal.aavs/2018/6.10.427.435

  12. Deng, L., Zhao, M., Cui, Y., Xia, Q., Jiang, L., Yin, H., &Zhao, L. (2022). Acrylamide induces intrinsicapoptosis and inhibits protective autophagy via theROS mediated mitochondrial dysfunction pathway inU87-MG cells. Drug and chemical toxicology, 45(6),2601–2612.https://doi.org/10.1080/01480545.2021.1979030

  13. Esposito, F., Squillante, J., Nolasco, A., Montuori, P.,Macrì, P. G., & Cirillo, T. (2022). Acrylamide levels insmoke from conventional cigarettes and heatedtobacco products and exposure assessment in habitualsmokers. Environmental Research, 208, 112659.https://doi.org/10.1016/J.ENVRES.2021.112659

  14. Farromeque Vásquez, S. (2022). Rol del estrés del retículoendoplasmático, estrés oxidativo y la respuestainflamatoria en la disfunción de las células βpancreáticas inducida por dieta rica en fructosa: suposible prevención con agentes antioxidantes ychaperonas químicas.http://sedici.unlp.edu.ar/handle/10915/145702

  15. Galuch, M. B., Magon, T. F. S., Silveira, R., Nicácio, A.E., Pizzo, J. S., Bonafe, E. G., Maldaner, L., Santos, O.O., & Visentainer, J. V. (2019). Determination ofacrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultraperformanceliquid chromatography tandem massspectrometry (UPLC-MS/MS). Food Chemistry, 282,120–126.https://doi.org/10.1016/J.FOODCHEM.2018.12.114

  16. Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3Inflammasome and the IL-1 Pathway inAtherosclerosis. Circulation Research, 122(12), 1722–

  17. 1740.https://doi.org/10.1161/CIRCRESAHA.118.31136217. Hölzl-Armstrong, L., Kucab, J. E., Moody, S., Zwart, E.P., Loutkotová, L., Duffy, V., Luijten, M., Gamboa daCosta, G., Stratton, M. R., Phillips, D. H., & Arlt, V.M. (2020). Mutagenicity of acrylamide andglycidamide in human TP53 knock-in (Hupki) mouseembryo fibroblasts. Archives of toxicology, 94(12),4173–4196.https://doi.org/10.1007/S00204-020-02878-0

  18. Hong, Y., Nan, B., Wu, X., Yan, H., & Yuan, Y. (2019).Allicin alleviates acrylamide-induced oxidative stressin BRL-3A cells. Life Sciences, 231, 116550.https://doi.org/10.1016/J.LFS.2019.116550

  19. Karimani, A., Hosseinzadeh, H., Mehri, S., Jafarian, A. H.,Kamali, S. A., Hooshang Mohammadpour, A., &Karimi, G. (2019). Histopathological and biochemicalalterations in non-diabetic and diabetic rats followingacrylamide treatment. Toxin Reviews 40(3), 277–284.https://doi.org/10.1080/15569543.2019.1566263

  20. Karimi, M. Y., Fatemi, I., Kalantari, H., Mombeini, M. A.,Mehrzadi, S., & Goudarzi, M. (2020). Ellagic AcidPrevents Oxidative Stress, Inflammation, andHistopathological Alterations in Acrylamide-InducedHepatotoxicity in Wistar Rats. Journal of DietarySupplements, 17(6), 651–662.https://doi.org/10.1080/19390211.2019.1634175

  21. Komoike, Y., & Matsuoka, M. (2016). Endoplasmicreticulum stress-mediated neuronal apoptosis byacrylamide exposure. Toxicology and AppliedPharmacology, 310, 68–77.https://doi.org/10.1016/J.TAAP.2016.09.005

  22. Lee, H. M., Kim, J. J., Kim, H. J., Shong, M., Ku, B. J., &Jo, E. K. (2013). Upregulated NLRP3 InflammasomeActivation in Patients With Type 2 Diabetes. Diabetes,62(1), 194–204. https://doi.org/10.2337/DB12-0420

  23. Liu, Y., Wang, R., Zheng, K., Xin, Y., Jia, S., & Zhao, X.(2020). Metabonomics analysis of liver in ratsadministered with chronic low-dose acrylamide.Xenobiotica, 50(8), 894-905.https://doi.org/10.1080/00498254.2020.1714791

  24. Liu, Y., Zhang, X., Yan, D., Wang, Y., Wang, N., Liu, Y.,Tan, A., Chen, X., & Yan, H. (2020). Chronicacrylamide exposure induced glia cell activation,NLRP3 infl-ammasome upregulation and cognitiveimpairment. Toxicology and Applied Pharmacology,393, 114949.https://doi.org/10.1016/J.TAAP.2020.114949

  25. Markovic Filipovic, J., Miler, M., Kojić, D., Karan, J.,Ivelja, I., Kokoris, J. Č., & Matavulj, M. (2022a).Effect of Acrylamide Treatment on Cyp2e1 Expressionand Redox Status in Rat Hepatocytes. InternationalJournal of Molecular Sciences 2022, Vol. 23, Page6062, 23(11), 6062.https://doi.org/10.3390/IJMS23116062

  26. Markovic Filipovic, J., Miler, M., Kojic, D., Visnjic, B. A.,Milosevic, V., Kokoris, J. C., Dordevic, M., &Matavulj, M. (2022b). Adult Rat Liver AfterSubchronic Acrylamide Treatment: Histological,Stereological and Biochemical Study. InternationalJournal of Morphology, 40(6), 1618–1623.https://doi.org/10.4067/S0717-95022022000601618

  27. Mehri, S., Abnous, K., Khooei, A., Mousavi, S. H.,Shariaty, V. M., & Hosseinzadeh, H. (2015). Crocinreduced acrylamide-induced neurotoxicity in Wistarrat through inhibition of oxidative stress. IranianJournal of Basic Medical Sciences, 18(9), 902.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620190/

  28. Nematollahi, A., Kamankesh, M., Hosseini, H., Ghasemi,J., Hosseini-Esfahani, F., & Mohammadi, A. (2019).Investigation and determination of acrylamide in themain group of cereal products using advancedmicroextraction method coupled with gaschromatography-mass spectrometry. Journal of CerealScience, 87, 157–164.https://doi.org/10.1016/J.JCS.2019.03.019

  29. Ozturk, I., Elbe, H., Bicer, Y., Karayakali, M., Onal, M. O.,& Altinoz, E. (2023). Therapeutic role of melatonin onacrylamide-induced hepatotoxicity in pinealectomizedrats: Effects on oxidative stress, NF-κB signalingpathway, and hepatocellular proliferation. Food andChemical Toxicology, 174, 113658.https://doi.org/10.1016/J.FCT.2023.113658

  30. Pyo, M. C., Shin, H. S., Jeon, G. Y., & Lee, K. W. (2020).Synergistic Interaction of Ochratoxin A andAcrylamide Toxins in Human Kidney and Liver Cells.Biological & Pharmaceutical Bulletin, 43(9), 1346–1355. https://doi.org/10.1248/BPB.B20-00282

  31. Reglamento (UE) 2017/2158, de 20 de noviembre de 2017,por el que se establecen medidas de mitigación yniveles de referencia para reducir la presencia deacrilamida en alimentos. Comisión Europea, 304/24,de 11 de noviembre de 2017.http://data.europa.eu/eli/reg/2017/2158/oj

  32. Rivadeneyra-Domínguez, E., Becerra-Contreras, Y.,Vázquez-Luna, A., Díaz-Sobac, R., & Rodríguez-Landa, J. F. (2018). Alterations of blood chemistry,hepatic and renal function, and blood cytometry inacrylamide-treated rats. Toxicology Reports, 5, 1124–1128. https://doi.org/10.1016/J.TOXREP.2018.11.006

  33. Sánchez-Otero, M. G., Méndez-Santiago, C. N., Luna-Vázquez, F., Soto-Rodríguez, I., García, H. S., &Serrano-Niño, J. C. (2017). Assessment of the DietaryIntake of Acrylamide by Young Adults in Mexico.Journal of Food and Nutrition Research, Vol. 5, 2017,Pages 894-899, 5(12), 894–899.https://doi.org/10.12691/JFNR-5-12-3

  34. Song, D., Xu, C., Holck, A. L., & Liu, R. (2021).Acrylamide inhibits autophagy, induces apoptosis andalters cellular metabolic profiles. Ecotoxicology andEnvironmental Safety, 208, 111543.https://doi.org/10.1016/j.ecoenv.2020.111543

  35. Song, M. J., & Malhi, H. (2019). The unfolded proteinresponse and hepatic lipid metabolism in non alcoholicfatty liver disease. Pharmacology & therapeutics, 203.https://doi.org/10.1016/J.PHARMTHERA.2019.107401

  36. Spataru, M.-C., Popovici, I., Pașca, S.-A., Pavel, G., &Solcan, C. (2020). Hepatotoxic and nephrotoxic effectof acrylamide from potato chips in mice. LucrăriŞtiinţifice Seria Medicină Veterinară, 63(2), 176–181.https://repository.uaiasi.ro/xmlui/handle/20.500.12811/275

  37. Sui, X., Yang, J., Zhang, G., Yuan, X. F., Li, W. H., Long,J. H., Luo, Y., Li, Y., & Wang, Y. (2020). NLRP3inflammasome inhibition attenuates subacuteneurotoxicity induced by acrylamide in vitro and invivo. Toxicology, 432, 152392.https://doi.org/10.1016/J.TOX.2020.152392

  38. Suman, M., Generotti, S., Cirlini, M., & Dall’asta, C.(2019). Acrylamide Reduction Strategy inCombination with Deoxynivalenol Mitigation inIndustrial Biscuits Production. Toxins 2019, 11(9),499.https://doi.org/10.3390/TOXINS11090499

  39. Sun, R., Chen, W., Cao, X., Guo, J., & Wang, J. (2020).Protective effect of curcumin on acrylamide-inducedhepatic and renal impairment in rats: Involvement ofCYP2E1. Natural Product Communications, 15(3), 1–9. https://doi.org/10.1177/1934578X20910548

  40. Tomaszewska, E., Muszyński, S., Świetlicka, I. et al.Prenatal acrylamide exposure results in timedependentchanges in liver function and basalhematological, and oxidative parameters in weanedWistar rats. Sci Rep 12, 14882 (2022).https://doi.org/10.1038/s41598-022-19178-5

  41. Uthra, C., Reshi, M. S., Jaswal, A., Yadav, D., Shrivastava,S., Sinha, N., & Shukla, S. (2022). Protective efficacyof rutin against acrylamide-induced oxidative stress,biochemical alterations and histopathological lesionsin rats. Toxicology research, 11(1), 215–225.https://doi.org/10.1093/TOXRES/TFAB125

  42. Wang, S. Y., Han, D., Pan, Y. L., Yu, C. P., Zhou, X. R.,Xin, R., Wang, R., Ma, W. W., Wang, C., & Wu, Y. H.(2020). A urinary metabolomic study from subjectsafter long-term occupational exposure to lowconcentration acrylamide using UPLC-QTOF/MS.Archives of Biochemistry and Biophysics, 681, 108279.https://doi.org/10.1016/J.ABB.2020.108279

  43. Wang, Y., Duan, L., Zhang, X., Jiao, Y., Liu, Y., Dai, L.,& Yan, H. (2021). Effect of long-term exposure toacrylamide on endoplasmic reticulum stress andautophagy in rat cerebellum.https://doi.org/10.1016/j.ecoenv.2021.112691

  44. Wu, Y., Li, Y., Jia, W., Zhu, L., Wan, X., Gao, S., &Zhang, Y. (2023). Reconstructing hepatic metabolicprofile and glutathione-mediated metabolic fate ofacrylamide. Environmental Pollution, 337, 122508.https://doi.org/10.1016/J.ENVPOL.2023.122508

  45. Yilmaz, B. O., Yildizbayrak, N., Aydin, Y., & Erkan, M.(2017). Evidence of acrylamide- and glycidamideinducedoxidative stress and apoptosis in Leydig andSertoli cells. Human and Experimental Toxicology,36(12), 1225–1235.https://doi.org/10.1177/0960327116686818

  46. Young, C. N. (2017). Endoplasmic reticulum stress in thepathogenesis of hypertension. Experimentalphysiology, 102(8), 869–884.https://doi.org/10.1113/EP086274

  47. Yu, L., Hong, W., Lu, S., Li, Y., Guan, Y., Weng, X., &Feng, Z. (2022). The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis:Therapeutic Targets and Treatment. Frontiers inPharmacology, 13.https://doi.org/10.3389/FPHAR.2022.780496/FULL

  48. Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). Theuse of asparaginase to reduce acrylamide levels incooked food. Food Chemistry, 210, 163–171.https://doi.org/10.1016/J.FOODCHEM.2016.04.105

  49. Zamani, E., Shaki, F., AbedianKenari, S., & Shokrzadeh,M. (2017). Acrylamide induces immunotoxicitythrough reactive oxygen species production andcaspase-dependent apoptosis in mice splenocytes viathe mitochondria-dependent signaling pathways.Biomedicine & Pharmacotherapy, 94, 523–530.https://doi.org/10.1016/j.biopha.2017.07.033




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Salud Publica Nutr. 2024;23

ARTíCULOS SIMILARES

CARGANDO ...