medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)


Biología sintética: Sobre el desarrollo de circuitos genéticos y su aplicación en biociencias y en biocombustibles

Carrillo-Martínez JC, Díaz-Zaragoza M, Oceguera-Contreras E, Ortiz-Torres G
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 99
Paginas: 1-16
Archivo PDF: 537.11 Kb.


PALABRAS CLAVE

biología sintética, circuitos genéticos, Bio-Bricks, ingeniería del microbioma, rutas sintéticas, producción de biocombustibles.

RESUMEN

La biología sintética tiene como objetivo desarrollar células con funciones totalmente nuevas y que no se encuentran en su naturaleza. Estas funciones se manifiestan a través de rutas creadas a partir de genes provenientes de otros microorganismos vinculados por técnicas moleculares como el ensamblaje de Bio-Brick. Algunos de estos enlaces pueden adoptar un comportamiento booleano y generar lo que se conoce como un circuito genético, compuesto principalmente por las partes funcionales de un gen (Promotor, RBS, ORF, Terminador). Estas piezas intercambiables forman lo que se conoce como Bio-Brick, que actúa como una puerta lógica al mostrar una estabilidad excelente y una memoria genética que perdura después de varias generaciones. Por los distintos tipos de comportamiento que presentan los Bio-Bricks, son muy atractivos para la industria, ya que con solo elegir un tipo de circuito sus aplicaciones son diversas, por ejemplo en la industria biomédica para (medicamentos contra el cáncer, la malaria, anticuerpos específicos e ingeniería del microbioma), o en la industria energética para (generar biocombustibles de segunda generación que compitan eficazmente con los combustibles fósiles; también se ha descubierto que por su utilidad en diferentes ámbitos, representa una solución a problemas como las altas emisiones de gases de efecto invernadero o la actual pandemia provocada por la aparición del SARS-CoV-2.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Agapakis, C. M., Ducat, D. C., Boyle, P. M., Wintermute,E. H., Way, J. C. & Silver, P. A. (2010). Insulation ofa synthetic hydrogen metabolism circuit in bacteria.Journal of Biological Engineering, 4(1), 3. https://doi.org/10.1186/1754-1611-4-3

  2. Ardestani, F., Rezvani, F. & Najafpour, G. (2017). Fermentativelactic acid production by lactobacilli: Moser and Gompertzkinetic models. Journal of Food Biosciences andTechnology, 7(2), 67–74.

  3. Arnold, J. W., Roach, J. & Azcarate-Peril, M. A. (2016).Emerging Technologies for Gut Microbiome Research. InTrends in Microbiology (Vol. 24, Issue 11, pp. 887–901).Elsevier Ltd. https://doi.org/10.1016/j.tim.2016.06.008

  4. Baldwin, G., Bayer, T., Dickinson, R., Ellis, T., Freemont, P. S.,Kitney, R. I., Polizzi, K. & Stan, G. B. (2012). SyntheticBiology - A Primer. In Synthetic Biology - A Primer (pp.1–179). Imperial College Press. https://doi.org/10.1142/P837

  5. Becskel, A. & Serrano, L. (2000). Engineering stability in genenetworks by autoregulation. Nature, 405(6786), 590–593.https://doi.org/10.1038/35014651

  6. Benkortbi, O., Hanini, S. & Bentahar, F. (2007). Batch kineticsand modelling of Pleuromutilin production by Pleurotusmutilis. Biochemical Engineering Journal, 36(1), 14–18.https://doi.org/10.1016/j.bej.2006.06.015

  7. Bojin, F., Gavriliuc, O., Mărgineanu, M.-B. & Păunescu, V.(2020). Design of an Epitope-Based Synthetic Long PeptideVaccine to Counteract the Novel China Coronavirus (2019-nCoV). Preprints. www.preprints.org

  8. Botesteanu, D. A., Lipkowitz, S., Lee, J. M. & Levy, D. (2016).Mathematical models of breast and ovarian cancers. WileyInterdisciplinary Reviews: Systems Biology and Medicine,8(4), 337–362. https://doi.org/10.1002/wsbm.1343

  9. Buchanan, R. L. & Cygnarowicz, M. L. (1990). A mathematicalapproach toward defining and calculating the duration ofthe lag phase. Food Microbiology, 7(3), 237–240. https://doi.org/10.1016/0740-0020(90)90029-H

  10. Buchbinder, E. I. & Desai, A. (2016). CTLA-4 and PD-1pathways similarities, differences, and implications oftheir inhibition. In American Journal of Clinical Oncology:Cancer Clinical Trials (Vol. 39, Issue 1, pp. 98–106).Lippincott Williams and Wilkins. https://doi.org/10.1097/COC.0000000000000239

  11. Buffie, C. G. & Pamer, E. G. (2013). Microbiota-mediatedcolonization resistance against intestinal pathogens. InNature Reviews Immunology (Vol. 13, Issue 11, pp. 790–801). Nature Publishing Group. https://doi.org/10.1038/nri3535

  12. Bulut, C. & Kato, Y. (2020). Epidemiology of COVID-19.Turkish Journal of Medical Sciences (Vol. 50, Issue 9, pp.563-570). https://doi.org/10.3906/sag-2004-172

  13. Cameron, D. E., Bashor, C. J. & Collins, J. J. (2014). A briefhistory of synthetic biology. In Nature Reviews Microbiology(Vol. 12, Issue 5, pp. 381–390). https://doi.org/10.1038/nrmicro3239

  14. Chen, X., Li, R., Pan, Z., Qian, C., Yang, Y., You, R., Zhao,J., Liu, P., Gao, L., Li, Z., QHuang, Q., Xu, L., Tang, J.,Tian, Q., Yao, W., Hu, L., Yan, X., Zhou, X., Wu, Y., Deng,K., Zhang, Z., Qian, Z., Chen, Y. & Ye, L. (2020). Humanmonoclonal antibodies block the binding of SARS-CoV-2spike protein to angiotensin converting enzyme 2 receptor.Cellular & Molecular Immunology (Vol. 17, pp. 647-649).https://doi.org/10.1038/s41423-020-0426-7

  15. Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer,A., Chu, D. K., Bleicker, T., Brünink, S., Schneider, J.,Schmidt, M. L., Mulders, D. G., Haagmans, B. L., vander Veer, B., van den Brink, S., Wijsman, L., Goderski,G., Romette, J. L., Ellis, J., Zambon, M., Peiris, M.,Goossens, H., Reusken, C., Koopmans, M. P. & Drosten,C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveillance : BulletinEuropeen Sur Les Maladies Transmissibles = EuropeanCommunicable Disease Bulletin, 25(3), 2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

  16. Cui, Sh., Lv, X., Xu, X., Chen, t., Zhang, H., Liu, Y., Li, J.,Du, G., Ledesma-Amaro, R. & Liu, L. (2021). MultilayerGenetic Circuits for Dynamic Regulation of MetabolicPathways. ACS Synth. Biol., 10, 1587-1597. https://doi.org/10.1021/acssynbio.1c00073

  17. De Koning, A., Huppes, G., Deetman, S. & Tukker, A. (2016).Scenarios for a 2 °C world: a trade-linked input–outputmodel with high sector detail. Climate Policy, 16(3),301–317. https://doi.org/10.1080/14693062.2014.999224

  18. Dong, N., Yang, X., Ye, L., Chen, K., Chan, E. W.-C., Yang, M.& Chen, S. (2020). Genomic and protein structure modellinganalysis depicts the origin and infectivity of 2019-nCoV,a new coronavirus which caused a pneumonia outbreak inWuhan, China. F1000Research, 9(121), 121. https://doi.org/10.12688/f1000research.22357.2

  19. Dou, J. & Bennett, M. R. (2018). Synthetic Biology and the GutMicrobiome. Biotechnology Journal, 13(5), 1–10. https://doi.org/10.1002/biot.201700159

  20. Duan, F. & March, J. C. (2010). Engineered bacterialcommunication prevents Vibrio cholerae virulence in aninfant mouse model. Proceedings of the National Academyof Sciences of the United States of America, 107(25),11260–11264. https://doi.org/10.1073/pnas.1001294107

  21. Dunn, I. J., Heinzle, E., Ingham, J. & Prenosil, J. E. (2013).Biological reaction engineering Dynamic Modellingfundamentals with simulation examples. In Journal ofChemical Information and Modeling (Vol. 53, Issue 9).VCH. https://doi.org/10.1017/CBO9781107415324.004

  22. Elena, C., Ravasi, P., Castelli, M. E., Peirú, S. & Menzella, H. G.(2014). Expression of codon optimized genes in microbialsystems: Current industrial applications and perspectives.In Frontiers in Microbiology (Vol. 5, Issue FEB). https://doi.org/10.3389/fmicb.2014.00021

  23. Evans, S. E. & Ost, D. E. (2015). Pneumonia in the neutropeniccancer patient. In Current Opinion in Pulmonary Medicine(Vol. 21, Issue 3, pp. 260–271). Lippincott Williams andWilkins. https://doi.org/10.1097/MCP.0000000000000156

  24. Galloway-Peña, J., Brumlow, C. & Shelburne, S. (2017). Impactof the Microbiota on Bacterial Infections during CancerTreatment. In Trends in Microbiology (Vol. 25, Issue 12,pp. 992–1004). Elsevier Ltd. https://doi.org/10.1016/j.tim.2017.06.006

  25. Gedik, H., Şimşek, F., Kantürk, A., Yildirmak, T., Arica, D.,Aydin, D., Demirel, N. & Yokuş, O. (2014). Bloodstreaminfections in patients with hematological malignancies:Which is more fatal – Cancer or resistant pathogens?Therapeutics and Clinical Risk Management, 10, 743–752.https://doi.org/10.2147/TCRM.S68450

  26. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison,C. A. & Smith, H. O. (2009). Enzymatic assembly of DNAmolecules up to several hundred kilobases. Nature Methods,6(5), 343–345. https://doi.org/10.1038/nmeth.1318

  27. Gurbatri, C. R., Lia, I., Vincent, R., Coker, C., Castro, S.,Treuting, P. M., Hinchliffe, T. E., Arpaia, N. & Danino, T.(2020). Engineered probiotics for local tumor delivery ofcheckpoint blockade nanobodies. Science TranslationalMedicine, 12(530), eaax0876. https://doi.org/10.1126/scitranslmed.aax0876

  28. Gurwitz, D. (2020). Angiotensin receptor blockers as tentativeSARS-CoV-2 therapeutics. Drug Development Research(Vol. 81, pp.537-540). ddr.21656. https://doi.org/10.1002/ddr.21656

  29. Haußner, C., Lach, J. & Eichler, J. (2017). Synthetic antibodymimics for the inhibition of protein–ligand interactions. InCurrent Opinion in Chemical Biology (Vol. 40, pp. 72–77).Elsevier Ltd. https://doi.org/10.1016/j.cbpa.2017.07.001

  30. Ho, J., Moyes, D. L., Tavassoli, M. & Naglik, J. R. (2017).The Role of ErbB Receptors in Infection. In Trends inMicrobiology (Vol. 25, Issue 11, pp. 942–952). ElsevierLtd. https://doi.org/10.1016/j.tim.2017.04.009

  31. Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman,J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural,A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S. I.,Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M. A.,Weldon, W.C., Biggs H. M., Uyeki, T. M. & Pillai, S. K.(2020). First Case of 2019 Novel Coronavirus in the UnitedStates. New England Journal of Medicine, 382, 929-936.https://doi.org/10.1056/nejmoa2001191

  32. Hynes, N. E. & Lane, H. A. (2005). ERBB receptors and cancer:The complexity of targeted inhibitors. In Nature ReviewsCancer (Vol. 5, Issue 5, pp. 341–354). Nature PublishingGroup. https://doi.org/10.1038/nrc1609

  33. Jacob, F. & Monod, J. (1961). On the Regulation of GeneActivity. Cold Spring Harbor Symposia on QuantitativeBiology, 26(0), 193–211. https://doi.org/10.1101/sqb.1961.026.01.024

  34. James, H. D. (2020). Hypothesis: angiotensin-convertingenzyme inhibitors and angiotensin receptor blockers mayincrease the risk of severe COVID-19. Journal of TravelMedicine | Oxford Academic, 27(3), taaa041. https://doi.org/https://doi.org/10.1093/jtm/taaa041

  35. Jonkers, J. & Derksen, P. W. B. (2007). Modeling metastaticbreast cancer in mice. Journal of Mammary Gland Biologyand Neoplasia, 12(2–3), 191–203. https://doi.org/10.1007/s10911-007-9050-8

  36. Kang, M. & Martin, A. (2017). Microbiome and colorectalcancer: Unraveling host-microbiota interactions in colitisassociatedcolorectal cancer development. In Seminars inImmunology (Vol. 32, pp. 3–13). Academic Press. https://doi.org/10.1016/j.smim.2017.04.003

  37. Kaper, J. B., Morris, J. G. & Levine, M. M. (1995). Cholera. InClinical Microbiology Reviews (Vol. 8, Issue 1, pp. 48–86).https://doi.org/10.1128/cmr.8.1.48

  38. Kassaw, T. K., Donayre-Torres, A. J., Antunes, M. S., Morey, K.J. & Medford, J. I. (2018). Engineering synthetic regulatorycircuits in plants. Plant Science, 273, 13–22. https://doi.org/10.1016/j.plantsci.2018.04.005

  39. Khafaie, M. A. & Rahim, F. (2020). Cross-country comparisonof case fatality rates of Covid-19/SARS-CoV-2. OsongPublic Health and Research Perspectives, 11(2), 74–80.https://doi.org/10.24171/j.phrp.2020.11.2.03

  40. Kim, J. H. S., Marafie, A., Jia, X. Y., Zoval, J. V. & Madou, M.J. (2006). Characterization of DNA hybridization kineticsin a microfluidic flow channel. Sensors and Actuators,B: Chemical, 113(1), 281–289. https://doi.org/10.1016/j.snb.2005.03.034

  41. Kitada, T., Diandreth, B., Teague, B. & Weiss, R. (2018).Programming gene and engineered-cell therapies withsynthetic biology. Science, Vol. 359 Issue 6376. DOI:10.1126/science.aad1067

  42. Köhler, G. & Milstein, C. (1975). Continuous cultures of fusedcells secreting antibody of predefined specificity. Nature,256(5517), 495–497. https://doi.org/10.1038/256495a0

  43. Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan,Y., Yang, P., Zhang, Y., Deng, W. & others. (2005). A crucialrole of angiotensin converting enzyme 2 (ACE2) in SARScoronavirus--induced lung injury. Nature Medicine, 11(8),875–879.

  44. Kwok, R. (2010). Five hard truths for synthetic biology. Nature,463(7279), 288–290. https://doi.org/10.1038/463288a

  45. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q.,Shi, X., Wang, Q., Zhang, L. & others. (2020). Structure ofthe SARS-CoV-2 spike receptor-binding domain bound tothe ACE2 receptor. Nature, 581(7807), 215–220.

  46. Ledford, H. (2020). CRISPR treatment inserted directly intothe body for first time. Nature. https://doi.org/10.1038/d41586-020-00655-8

  47. Liu, H., Zhou, P., Qi, M., Guo, L., Gao, C., Hu, G., Song, W., Wu,J., Chen, X., Chen, J., Chen, W. & Liu, L. (2022). Enhancingbiofuels production by engineering the actin cytoskeletonin Saccharomyces cerevisiae. Nature Communications2022 13:1, 13(1), 1–14. https://doi.org/10.1038/s41467-022-29560-6

  48. Liu, J. Z., Weng, L. P., Zhang, Q. L., Xu, H. & Ji, L. N. (2003).A mathematical model for gluconic acid fermentation byAspergillus niger. Biochemical Engineering Journal, 14(2),137–141. https://doi.org/10.1016/S1369-703X(02)00169-9

  49. Liu, Z., Zhang, J., Jin, J., Geng, Z., Qi, Q. & Liang, Q. (2018).Programming bacteria with light-sensors and applicationsin synthetic biology. Frontiers in Microbiology, 9(nov),2692. https://doi.org/10.3389/fmicb.2018.02692

  50. MacDonald, I. C. & Deans, T. L. (2016). Tools and applicationsin synthetic biology. Advanced Drug Delivery Reviews,105, 20–34. https://doi.org/10.1016/j.addr.2016.08.008

  51. Martemyanov, K. A., Shirokov, V. A., Kurnasov, O. V.,Gudkov, A. T. & Spirin, A. S. (2001). Cell-free productionof biologically active polypeptides: Application to thesynthesis of antibacterial peptide cecropin. ProteinExpression and Purification, 21(3), 456–461. https://doi.org/10.1006/prep.2001.1400

  52. Martin, V. J. J., Piteral, D. J., Withers, S. T., Newman, J. D. &Keasling, J. D. (2003). Engineering a mevalonate pathwayin Escherichia coli for production of terpenoids. NatureBiotechnology, 21(7), 796–802. https://doi.org/10.1038/nbt833

  53. Masui, H., Kamrath, H., Mendelsohn, J., Apell, G. & Houston,L. L. (1989). Cytotoxicity against Human Tumor CellsMediated by the Conjugate of Anti-Epidermal GrowthFactor Receptor Monoclonal Antibody to RecombinantRicin A Chain. Cancer Research, 49(13), 3482–3488.

  54. McKellar, R. C. (1997). A heterogeneous population modelfor the analysis of bacterial growth kinetics. InternationalJournal of Food Microbiology, 36(2–3), 179–186. https://doi.org/10.1016/S0168-1605(97)01266-X

  55. McKellar, R. C. & Knight, K. (2000). A combineddiscrete-continuous model describing the lag phase ofListeria monocytogenes. International Journal of FoodMicrobiology, 54(3), 171–180. https://doi.org/10.1016/S0168-1605(99)00204-4

  56. Mechmeche, M., Kachouri, F., Yaghlane, H. B., Ksontini,H., Setti, K. & Hamdi, M. (2017). Kinetic analysisand mathematical modeling of growth parameters ofLactobacillus plantarum in protein-rich isolates from tomatoseed. Food Science and Technology International, 23(2),128–141. https://doi.org/10.1177/1082013216665706

  57. Meyers, R. A. (Robert A. (2015). Synthetic biology (John Wiley& Sons (ed.)).

  58. Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. & Voigt, C. A.(2012). Genetic programs constructed from layered logicgates in single cells. Nature, 491(7423), 249–253. https://doi.org/10.1038/nature11516

  59. Muñoz-Miranda, L. A., Higuera-Ciapara, I., Gschaedler-Mathis,A. C., Rodríguez-Zapata, L. C., Pereira-Santana, A. &Figueroa-Yáñez, L. J. (2019). Brief description of SyntheticBiology and the importance of its relationship with otherdisciplines. Revista Mexicana de Ingenieria Biomedica,40(1), 1-7 https://doi.org/10.17488/RMIB.40.1.9

  60. Muthumani, K., Falzarano, D., Reuschel, E. L., Tingey, C.,Flingai, S., Villarreal, D. O., Wise, M., Patel, A., Izmirly,A., Aljuaid, A., Seliga, A. M., Soule, G., Morrow, M.,Kraynyak, K. A., Khan, A. S., Scott, D. P., Feldmann, F.,LaCasse, R., Meade-W-hite, K., Okumura, A., Ugen, K.E., Sardesai, N.Y., Kim, J. J., Kobinger, G. Feldmann,H. & Weiner, D. B. (2015). A synthetic consensus antispikeprotein DNA vaccine induces protective immunityagainst Middle East respiratory syndrome coronavirusin nonhuman primates. Science Translational Medicine,7(301), 301ra132--301ra132. https://doi.org/10.1126/scitranslmed.aac7462

  61. Nandagopal, N. & Elowitz, M. B. (2011). Synthetic Biology:Integrated Gene Circuits. Science, 333(6047), 1244–1248.https://doi.org/10.1126/science.1207084

  62. Oceguera-Contreras, E., Aguilar-Juárez, O., Oseguera-Galindo, D., Macías-Barragán, J., Bolaños-Rosales, R.,Mena-Enríquez, M., Arias-García, A., Montoya-Buelna,M., Graciano-Machuca, O. & De León-Rodríguez,A. (2019). Biohydrogen production by vermihumusassociatedmicroorganisms using agro industrialwastes as substrate. International Journal of HydrogenEnergy, 44(20), 9856–9865. https://doi.org/10.1016/j.ijhydene.2018.10.236

  63. Ogata, K., Columbus, B., New, I., San, Y., Upper, F., River, S.,Cape, A., Dubai, T., Madrid, L., Munich, M., Montreal, P.,Delhi, T., Sao, M. C., Sydney, P., Kong, H., Singapore, S.& Tokyo, T. (2010). Modern Control Engineering FifthEdition.

  64. Oh, Y. K., Hwang, K. R., Kim, C., Kim, J. R. & Lee, J. S.(2018). Recent developments and key barriers to advancedbiofuels: A short review. Bioresource Technology,257(December 2017), 320–333. https://doi.org/10.1016/j.biortech.2018.02.089

  65. Paduch, M. & Kossiakoff, A. A. (2017). Generating conformationand complex-specific synthetic antibodies. In SyntheticAntibodies (pp. 93–119). Springer.

  66. Palestino, G., García-Silva, I., González-Ortega, O., Rosales-Mendoza, S. (2020). Can nanotechnology help in thefight against COVID-19? Expert Review of Anti-infectiveTherapy? Vol. 18, 849–864. https://doi.org/10.1080/14787210.2020.1776115

  67. Patel, M. & Nagl, S. (2006). Mathematical Models of Cancer.In Cancer Bioinformatics: From Therapy Design toTreatment (pp. 57–93). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470032898.ch4

  68. Patel, S. K. S., Lee, J. K. & Kalia, V. C. (2018). Nanoparticlesin Biological Hydrogen Production: An Overview.Indian Journal of Microbiology, 58(1), 8–18. https://doi.org/10.1007/s12088-017-0678-9

  69. Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B. & Keasling,J. D. (2012). Microbial engineering for the production ofadvanced biofuels. In Nature (Vol. 488, Issue 7411, pp.320–328). https://doi.org/10.1038/nature11478

  70. Perlman, S. (2020). Another Decade, Another Coronavirus. NewEngland Journal of Medicine, 382(8), 760-762. https://doi.org/10.1056/nejme2001126

  71. Perni, S. (2013). Microbial control and safety in inhalationdevices. In Inhaler Devices: Fundamentals, Design andDrug Delivery (pp. 51–74). Elsevier Ltd. https://doi.org/10.1533/9780857098696.1.51

  72. Polizzi, K. M. . (2013). Synthetic Biology, Methods in MolecularBiology. https://doi.org/10.1007/978-1-62703-625-2

  73. Ptashne, M., Johnson, A. D. & Pabo, C. O. (1982). A geneticswitch in a bacterial virus. Scientific American, 247(5), 128–140. https://doi.org/10.1038/scientificamerican1182-128

  74. Ro, D. K., Paradise, E. M., Quellet, M., Fisher, K. J., Newman,K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham,T. S., Kirby, J., Chang, M. C. Y., Withers, S. T., Shiba,Y., Sarpong, R. & Keasling, J. D. (2006). Productionof the antimalarial drug precursor artemisinic acid inengineered yeast. Nature, 440(7086), 940–943. https://doi.org/10.1038/nature04640

  75. Ruder, W. C., Lu, T. & Collins, J. J. (2011). Synthetic biologymoving into the clinic. In Science (Vol. 333, Issue 6047,pp. 1248–1252). https://doi.org/10.1126/science.1206843

  76. Sato, J. D., Kawamoto, T., Le, A. D., Mendelsohn, J., Polikoff,J. & Sato, G. H. (1983). Biological effects in vitro ofmonoclonal antibodies to human epidermal growth factorreceptors. Molecular Biology & Medicine, 1(5), 511–529.

  77. Schultz, M. (2008). Clinical use of E. coli Nissle 1917 ininflammatory bowel disease. Inflammatory Bowel Diseases,14(7), 1012–1018. https://doi.org/10.1002/ibd.20377

  78. Sekoai, P. T., Ouma, C. N. M., du Preez, S. P., Modisha, P.,Engelbrecht, N., Bessarabov, D. G. & Ghimire, A. (2019).Application of nanoparticles in biofuels: An overview. InFuel (Vol. 237, pp. 380–397). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2018.10.030

  79. Shen, M., Zhou, Y., Ye, J., Abdullah AL-maskri, A. A., Kang,Y., Zeng, S. & Cai, S. (2020). Recent advances andperspectives of nucleic acid detection for coronavirus.Journal of Pharmaceutical Analysis, 10(2), 97-101. https://doi.org/10.1016/j.jpha.2020.02.010

  80. Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. (2016).Manipulating Bacterial Communities by in situ MicrobiomeEngineering. Trends in Genetics, 32(4), 189–200. https://doi.org/10.1016/j.tig.2016.01.005

  81. Siuti, P., Yazbek, J. & Lu, T. K. (2013). Synthetic circuitsintegrating logic and memory in living cells. NatureBiotechnology, 31(5), 448–452. https://doi.org/10.1038/nbt.2510

  82. Song, X., Zhang, X., Kuang, C., Zhu, L. & Zhao, X. (2010).Batch kinetics and modeling of DHA production by S.limacinum OUC88. Food and Bioproducts Processing,88(1), 26–30. https://doi.org/10.1016/j.fbp.2009.12.004

  83. South, A. M., Tomlinson, L., Edmonston, D., Hiremath, S. &Sparks, M. A. (2020). Controversies of renin–angiotensinsystem inhibition during the COVID-19 pandemic.Nature Reviews Nephrology, 16(6), 305-307 https://doi.org/10.1038/s41581-020-0279-4

  84. Speth, R. C. (2020). Response to recent commentaries regardingthe involvement of angiotensin-converting enzyme 2(ACE2) and renin-angiotensin system blockers in SARSCoV-2 infections. Drug Development Research, 81(6),643https://doi.org/10.1002/ddr.21672

  85. Sprinzak, D. & Elowitz, M. B. (2005). Reconstruction ofgenetic circuits. In Nature (Vol. 438, Issue 7067, pp. 443–448). Nature Publishing Group. https://doi.org/10.1038/nature04335

  86. Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J.,Redding, A., Ouellet, M. & Keasling, J. D. (2008). Metabolicengineering of Saccharomyces cerevisiae for the productionof n-butanol. Microbial Cell Factories, 7, 1-8. https://doi.org/10.1186/1475-2859-7-36

  87. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A.,McClure, A., Del Cardayre, S. B. & Keasling, J. D.(2010). Microbial production of fatty-acid-derived fuelsand chemicals from plant biomass. Nature, 463(7280),559–562. https://doi.org/10.1038/nature08721

  88. Sun, J., Gajurel, D., Buys, N. & Yin, C. (2019). Effects ofProbiotics on Improvement of Metabolic Factors in PregnantWomen. In Microbiome and Metabolome in Diagnosis,Therapy, and other Strategic Applications (pp. 167–176).Elsevier Inc. https://doi.org/10.1016/b978-0-12-815249-2.00017-8

  89. Swofford, C. A., Van Dessel, N. & Forbes, N. S. (2015). QuorumsensingSalmonella selectively trigger protein expressionwithin tumors. Proceedings of the National Academy ofSciences of the United States of America, 112(11), 3457–3462. https://doi.org/10.1073/pnas.1414558112

  90. Tadeo, I., Berbegall, A. P., Escudero, L. M., Álvaro, T. &Noguera, R. (2014). Biotensegrity of the extracellularmatrix: Physiology, dynamic mechanical balance,and implications in oncology and mechanotherapy. InFrontiers in Oncology: Vol. 4mar. https://doi.org/10.3389/fonc.2014.0003990. Tahir, M. B. & Masood, A. (2020). The COVID-19 Outbreak:Other Parallel Problems. Available at SSRN ElectronicJournal 3572258SS. https://doi.org/10.2139/ssrn.3572258

  91. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T.,Tomoda, K. & Yamanaka, S. (2007). Induction of PluripotentStem Cells from Adult Human Fibroblasts by DefinedFactors. Cell, 131(5), 861–872. https://doi.org/10.1016/J.CELL.2007.11.019

  92. Tan, C., Marguet, P. & You, L. (2009). Emergent bistabilityby a growth-modulating positive feedback circuit. NatureChemical Biology, 5(11), 842–848. https://doi.org/10.1038/nchembio.218

  93. Thomson, G. (2020). COVID-19: Social distancing, ACE 2receptors, protease inhibitors and beyond? In InternationalJournal of Clinical Practice (Vol. 74, Issue 7, p. e13503).Wiley. https://doi.org/10.1111/ijcp.13503

  94. Tjørve, K. M. C. & Tjørve, E. (2017). The use of Gompertzmodels in growth analyses, and new Gompertz-modelapproach: An addition to the Unified-Richards family.PLoS ONE, 12(6), e0178691. https://doi.org/10.1371/journal.pone.017869194. Vandenbroucke, K., De Haard, H., Beirnaert, E., Dreier, T.,Lauwereys, M., Huyck, L., Van Huysse, J., Demetter,P., Steidler, L., Remaut, E., Cuvelier, C. & Rottiers, P.(2010). Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis.Mucosal Immunology, 3(1), 49–56. https://doi.org/10.1038/mi.2009.116

  95. Villarino, L., Splan, K. E., Reddem, E., Alonso-Cotchico,L., Gutiérrez de Souza, C., Lledós, A., Maréchal, J.D., Thunnissen, A. M. W. H. & Roelfes, G. (2018). AnArtificial Heme Enzyme for Cyclopropanation Reactions.Angewandte Chemie - International Edition, 57(26),7785–7789. https://doi.org/10.1002/anie.20180294695. Wang, B. & Buck, M. (2012). Customizing cell signaling usingengineered genetic logic circuits. Trends in Microbiology, 20Issue 8, 376-384. https://doi.org/10.1016/j.tim.2012.05.001

  96. Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y. & Gao, G. F. (2015).MERS, SARS, and Ebola: The Role of Super-Spreadersin Infectious Disease. In Cell Host and Microbe (Vol. 18,Issue 4, pp. 398–401). Cell Press. https://doi.org/10.1016/j.chom.2015.09.013

  97. Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G.,Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L.,Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng,J.-J., Xu, L., Holmes, E. C. & Zhang, Y.-Z. (2020). A newcoronavirus associated with human respiratory disease inChina. Nature, 579(7798), 265-269 https://doi.org/10.1038/s41586-020-2008-3

  98. Xiang, J., Yan, M., Li, H., Liu, T., Lin, C., Huang, S. & Shen,C. (2020). Evaluation of Enzyme-Linked Immunoassayand Colloidal Gold- Immunochromatographic AssayKit for Detection of Novel Coronavirus (SARS-Cov-2)Causing an Outbreak of Pneumonia (COVID-19).MedRxiv, 2020.02.27.20028787. https://doi.org/10.1101/2020.02.27.20028787

  99. Yang, L., Nielsen, A. A. K., Fernandez-Rodriguez, J., McClune,C




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26

ARTíCULOS SIMILARES

CARGANDO ...