medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)


Diversidad y complejidad estructural del flagelo bacteriano

Domenzain-Reyna C, Camarena L
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 120
Paginas: 1-20
Archivo PDF: 458.84 Kb.


PALABRAS CLAVE

motor flagelar, biogénesis flagelar, estructura flagelar, estator flagelar.

RESUMEN

Esta revisión muestra la estructura y biogénesis del flagelo bacteriano y su diversidad estructural en numerosos modelos bacterianos. Se expone, cómo a partir de un núcleo estructural flagelar conservado (NEFC), se han diversificado las estructuras que modifican su capacidad y función. Esta variabilidad se sabe, participa en la habilidad de adaptación de cada especie a un nicho específico. El motor flagelar bacteriano es una estructura compleja constituida por un rotor y un estator, los cuales se encuentran embebidos en la envoltura celular. La incorporación de nuevos componentes, que contribuyen a su funcionamiento, incluyen la presencia de anillos o discos adicionales a los presentes en el NEFC, cubriendo o interactuando con el cuerpo basal y el estator, lo que permite una mayor eficiencia y velocidad de rotación al favorecer el reclutamiento de un mayor número de estatores, o que permiten la estabilización de estos al rotor. Además, podemos encontrar ganchos más robustos o filamentos con flagelinas modificadas que presentan propiedades enzimáticas. El aumento de los modelos bacterianos estudiados junto con el avance de las técnicas de visualización como la criomicroscopía, han permitido describir la gran riqueza existente en las variaciones de la arquitectura flagelar lo que ha llevado a un cambio de paradigma al lograr entender algunos de los procesos que permiten el ensamblaje y función del motor flagelar. Todo lo mencionado evidencia el momento de rápido progreso que el campo de estudio del flagelo bacteriano muestra recientemente.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abrusci, P., Vergara-Irigaray, M., Johnson, S., Beeby, M. D.,Hendrixson, D. R., Roversi, P., Friede, M. E., Deane, J. E.,Jensen, G. J., Tang, C. M. & Lea, S. M. (2013). Architectureof the major component of the type III secretion systemexport apparatus. Nature Structural & Molecular Biology, 20(1), 99-106. https://doi.org/10.1038/nsmb.2452.

  2. Bäuerlein, F. J. B. & Baumeister, W. (2021). Towards VisualProteomics at High Resolution. Journal of MolecularBiology, 433(20), 167187. https://doi.org/10.1016/j.jmb.2021.167187.

  3. Ballado, T., Camarena, L., González-Pedrajo, B., Silva-Herzog,E. & Dreyfus, G. (2001). The hook gene (flgE) is expressedfrom the flgBCDEF operon in Rhodobacter sphaeroides:study of an flgE mutant. Journal of Bacteriology, 183(5),1680–1687. https://doi.org/10.1128/jb.183.5.1680-1687.2001.

  4. Bange, G., Kümmerer, N., Engel, C., Bozkurt, G., Wild, K. &Sinning, I. (2010). FlhA provides the adaptor for coordinateddelivery of late flagella building blocks to the type IIIsecretion system. Proceedings of the National Academyof Sciences of the United States of America, 107(25),11295–11300. https://doi.org/10.1073/pnas.1001383107.

  5. Beatson, S. A., Minamino, T. & Pallen, M. J. (2006). Variationin bacterial flagellins: from sequence to structure. Trendsin Microbiology, 14(4), 151–155. https://doi.org/10.1016/j.tim.2006.02.008.

  6. Beeby, M., Ribardo, D. A., Brennan, C. A., Ruby, E. G.,Jensen, G. J. & Hendrixson, D. R. (2016). Diverse hightorquebacterial flagellar motors assemble wider statorrings using a conserved protein scaffold. Proceedings ofthe National Academy of Sciences of the United States ofAmerica, 113(13), E1917-E1926. https://doi.org/10.1073/pnas.1518952113.

  7. Benítez, J. M. & Camarena, L. (2022). Mecanismos de regulaciónque controlan la expresión de la flagelina en bacterias. TIPRevista Especializada en Ciencias Químico-Biológicas, 25,1-25. https://doi.org/10.22201/fesz.23958723e.2022.460.

  8. Bergeron, J. R. (2016). Structural modeling of the flagellum MSring protein FliF reveals similarities to the type III secretionsystem and sporulation complex. PeerJ, 4, e1718. https://doi.org/10.7717/peerj.1718.

  9. Block, S. M. & Berg, H. (1984). Successive incorporation offorce-generating units in the bacterial rotary motor. Nature,309, 470-472. http://doi.org/10.1038/309470a0.

  10. Castillo, D. J., Ballado, T., Camarena, L. & Dreyfus, G. (2009).Functional analysis of a large non-conserved region ofFlgK (HAP1) from Rhodobacter sphaeroides. Antonievan Leeuwenhoek, 95(1), 77–90. https://doi.org/10.1007/s10482-008-9290-7.

  11. Chaban, B., Coleman, I. & Beeby, M. (2018). Evolution ofhigher torque in Campylobacter-type bacterial flagellarmotors. Scientific Reports, 8(1), 97. https://doi.org/10.1038/s41598-017-18115-1.

  12. Chang, Y., Carroll, B. L. & Liu, J. (2021a). Structural basisof bacterial flagellar motor rotation and switching.Trends in Microbiology, 29(11), 1024–1033. https://doi.org/10.1016/j.tim.2021.03.009.

  13. Chang, Y., Xu, H., Motaleb, M. A. & Liu, J. (2021b).Characterization of the Flagellar Collar Reveals StructuralPlasticity Essential for Spirochete Motility. mBio, 12(6),e02494-21. https://doi.org/10.1128/mbio.02494-21.

  14. Chang, Y., Moon, K. H., Zhao, X., Norris, S. J., Motaleb,M. A. & Liu, J. (2019). Structural insights into flagellarstator-rotor interactions. eLife, 8(e48979), 1-18. https://doi.org/10.7554/elife.48979.

  15. Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J. R., Hendrixson,D. R., Briegel, A., Li, Z., Shi, J., Tocheva, E. I., Müller, A.,Dobro, M. J. & Jensen, G. J. (2011). Structural diversityof bacterial flagellar motors. The EMBO Journal, 30(14),2972–2981. https://doi.org/10.1038/emboj.2011.186.

  16. Chun, S. & Parkinson, J. (1988). Bacterial motility:membrane topology of the Escherichia coli MotB protein.Science, 239(4837), 276-278. https://doi.org/10.1126/science.2447650.

  17. Cohen, E. J. & Hughes, K. T. (2014). Rod-to-Hook Transitionfor Extracellular Flagellum Assembly Is Catalyzed by theL-Ring-Dependent Rod Scaffold Removal. Journal ofBacteriology, 196(13), 2387–2395. https://doi.org/10.1128/JB.01580-14.

  18. Colin, R., Ni, B., Laganenka, L. & Sourjik, V. (2021). Multiplefunctions of flagellar motility and chemotaxis in bacterialphysiology. FEMS Microbiology Reviews, 45(6), fuab038,1-19. https://doi.org/10.1093/femsre/fuab038.

  19. Deakin, W. J., Parker, V. E., Wright, E. L., Ashcroft, K. J., Loake,G. J. & Shaw, C. H. (1999). Agrobacterium tumefacienspossesses a fourth flagellin gene located in a large genecluster concerned with flagellar structure, assembly andmotility. Microbiology, 145(6), 1397–1407. https://doi.org/10.1099/13500872-145-6-1397.

  20. Deme, J. C., Johnson, S., Vickery, O., Muellbauer, A.,Monkhouse, H., Griffiths, T., James, R. H., Berks, B.C., Coulton, J. W., Stansfeld, P. J. & Lea, S. M. (2020).Structures of the stator complex that drives rotation of thebacterial flagellum. Nature Microbiology, 5, 1553-15564.https://doi.org/10.1038/s41564-020-0788-8.

  21. DePamphilis, M. L. & Adler, J. (1971). Fine Structure andIsolation of the Hook-Basal Body Complex of Flagellafrom Escherichia coli and Bacillus subtilis. Journal ofBacteriology, 105(1), 384–395. https://doi.org/10.1128/jb.105.1.384-395.1971.

  22. Eckhard, U., Bandukwala, H., Mansfield, M. J., Marino, G.,Cheng, J., Wallace, I., Holyoak, T., Charles, T. C., Austin,J., Overall, C. M. & Doxey, A. C. (2017). Discovery ofa proteolytic flagellin family in diverse bacterial phylathat assembles enzymatically active flagella. NatureCommunications, 8(521), 1-9. https://doi.org/10.1038/s41467-017-00599-0.

  23. Ely, B., Ely, T., Crymes, W. & Minnich, S. (2000). A Family of SixFlagellin Genes Contributes to the Caulobacter crescentusFlagellar Filament. Journal of Bacteriology, 182(17), 5001–5004. https://doi.org/10.1128/jb.182.17.5001-5004.2000.

  24. Fabela, S., Domenzain, C., Mora, J. la, Osorio, A., Ramírez-Cabrera, V., Poggio, S., Dreyfus, G. & Camarena, L.(2013). A distant homologue of the FlgT protein interactswith MotB and FliL and is essential for flagellar rotationin Rhodobacter sphaeroides. Journal of Bacteriology,195(23), 5285–5296. https://doi.org/10.1128/jb.00760-13.

  25. Fabiani, F. D., Renault, T. T., Peters, B., Dietsche, T., Gálvez,E. J., Guse, A., Freier, K., Charpentier, E., Strowig, T.,Franz-Wachtel, M., Macek, B., Wagner, S., Hensel, M.& Erhardt, M. (2017). A flagellum-specific chaperonefacilitates assembly of the core type III export apparatusof the bacterial flagellum. PLOS Biology, 15(8), e2002267.https://doi.org/10.1371/journal.pbio.2002267.

  26. Fahrner, K. A., Block, S. M., Krishnaswamy, S., Parkinson, J.S. & Berg, H. C. (1994). A Mutant Hook-associated Protein(HAP3) Facilitates Torsionally Induced Transformationsof the Flagellar Filament of Escherichia coli. Journalof Molecular Biology, 238(2), 173–186. https://doi.org/10.1006/jmbi.1994.1279.

  27. Faulds-Pain, A., Birchall, C., Aldridge, C., Smith, W. D.,Grimaldi, G., Nakamura, S., Miyata, T., Gray, J., Li, G.,Tang, J. X., Namba, K., Minamino, T. & Aldridge, P. D.(2011). Flagellin redundancy in Caulobacter crescentus andits implications for flagellar filament assembly. Journal ofBacteriology, 193(11), 2695–2707. https://doi.org/10.1128/jb.01172-10.

  28. Francis, N., Sosinsky, G., Thomas, D. & DeRosier, D. (1994).Isolation, characterization and structure of bacterialflagellar motors containing the switch complex. Journalof Molecular Biology, 235(4), 1261–1270. https://doi.org/10.1006/jmbi.1994.1079.

  29. Fujii, T., Kato, T. & Namba, K. (2009). Specific Arrangementof α-Helical Coiled Coils in the Core Domain of theBacterial Flagellar Hook for the Universal Joint Function.Structure, 17(11), 1485–1493. https://doi.org/10.1016/j.str.2009.08.017.

  30. Fujii, T., Kato, T., Hiraoka, K. D., Miyata, T., Minamino,T., Chevance, F. F., Hughes, K. T. & Namba, K. (2017).Identical folds used for distinct mechanical functions of thebacterial flagellar rod and hook. Nature Communications,8(1), 14276. https://doi.org/10.1038/ncomms14276.

  31. Fukumura, T., Makino, F., Dietsche, T., Kinoshita, M., Kato,T., Wagner, S., Namba, K., Imada, K. & Minamino, T.(2017). Assembly and stoichiometry of the core structureof the bacterial flagellar type III export gate complex.PLOS Biology, 15(8), e2002281. https://doi.org/10.1371/journal.pbio.2002281.

  32. García-Ramos, M., Mora, J. de la, Ballado, T., Camarena,L. & Dreyfus, G. (2021). Modulation of the EnzymaticActivity of the Flagellar Lytic Transglycosylase SltF byRod Components and the Scaffolding Protein FlgJ inRhodobacter sphaeroides. Journal of Bacteriology, 203(20),e0037221. https://doi.org/10.1128/jb.00372-21.

  33. Gibson, K. H., Trajtenberg, F., Wunder, E. A., Brady, M. R.,Martin, F. S., Mechaly, A., Shang, Z., Liu, J., Picardeau,M., Ko, A., Buschiazzo, A. & Sindelar, C. V. (2020). Anasymmetric sheath controls flagellar supercoiling andmotility in the Leptospira spirochete. eLife, 9(e53672),1-24. https://doi.org/10.7554/elife.53672.

  34. González-Pedrajo, B., Ballado, T., Campos, A., Sockett, R.E., Camarena, L. & Dreyfus, G. (1997). Structural andgenetic analysis of a mutant of Rhodobacter sphaeroidesWS8 deficient in hook length control. Journal ofBacteriology, 179(21), 6581–6588. https://doi.org/10.1128/jb.179.21.6581-6588.1997.

  35. González-Pedrajo, B., Mora, J. de la, Ballado, T., Camarena, L.& Dreyfus, G. (2002). Characterization of the flgG operonof Rhodobacter sphaeroides WS8 and its role in flagellumbiosynthesis. Biochimica et Biophysica Acta (BBA) - GeneStructure and Expression, 1579(1), 55–63. https://doi.org/10.1016/s0167-4781(02)00504-3.

  36. Grognot, M. & Taute, K. M. (2021). More than propellers: howflagella shape bacterial motility behaviors. Current Opinionin Microbiology, 61, 73–81. https://doi.org/10.1016/j.mib.2021.02.005.

  37. Guo, S., Xu, H., Chang, Y., Motaleb, M. A. & Liu, J. (2022).FliL ring enhances the function of periplasmic flagella.Proceedings of the National Academy of Sciences of theUnited States of America, 119(11), e2117245119, 1-9.https://doi.org/10.1073/pnas.2117245119.

  38. Henderson, L. D., Matthews-Palmer, T. R., Gulbronson,C. J., Ribardo, D. A., Beeby, M. & Hendrixson, D. R.(2020). Diversification of Campylobacter jejuni FlagellarC-Ring Composition Impacts Its Structure and Functionin Motility, Flagellar Assembly, and Cellular Processes.mBio, 11(e02286-19), 1-19. https://doi.org/10.1128/mbio.02286-19.

  39. Hendriksen, J. J., Lee, H. J., Bradshaw, A. J., Namba, K.,Chevance, F. F. V., Minamino, T. & Hughes, K. T. (2021).Genetic Analysis of the Salmonella FliE Protein That Formsthe Base of the Flagellar Axial Structure. mBio, 12(e02392-21), 1-15. https://doi.org/10.1128/mbio.02392-21.

  40. Hirano, T., Yamaguchi, S., Oosawa, K. & Aizawa, S. (1994).Roles of FliK and FlhB in determination of flagellarhook length in Salmonella typhimurium. Journal ofBacteriology, 176(17), 5439–5449. https://doi.org/10.1128/jb.176.17.5439-5449.1994.

  41. Hiraoka, K. D., Morimoto, Y. V., Inoue, Y., Fujii, T., Miyata, T.,Makino, F., Minamino, T. & Namba, K. (2017). Straightand rigid flagellar hook made by insertion of the FlgGspecific sequence into FlgE. Scientific Reports, 7(46723),1-8. https://doi.org/10.1038/srep46723.

  42. Homma, M. & Kojima, S. (2022). The Periplasmic Domain ofthe Ion-Conducting Stator of Bacterial Flagella RegulatesForce Generation. Frontiers in Microbiology, 13(869187),1-12. https://doi.org/10.3389/fmicb.2022.869187.

  43. Horváth, P., Kato, T., Miyata, T. & Namba, K. (2019). Structure ofSalmonella Flagellar Hook Reveals Intermolecular DomainInteractions for the Universal Joint Function. Biomolecules,9(9), 1-13. https://doi.org/10.3390/biom9090462.

  44. Hosking, E. R., Vogt, C., Bakker, E. P. & Manson, M. D. (2006).The Escherichia coli MotAB proton channel unplugged.Journal of Molecular Biology, 364(5), 921–937. https://doi.org/10.1016/j.jmb.2006.09.035.

  45. Ikeda, T., Homma, M., Iino, T., Asakura, S. & Kamiya, R.(1987). Localization and stoichiometry of hook-associatedproteins within Salmonella typhimurium flagella. Journal ofBacteriology, 169(3), 1168–1173. https://doi.org/10.1128/jb.169.3.1168-1173.1987.

  46. Inoue, Y., Ogawa, Y., Kinoshita, M., Terahara, N., Shimada,M., Kodera, N., Ando, T., Namba, K., Kitao, A., Imada,K. & Minamino, T. (2019). Structural Insights into theSubstrate Specificity Switch Mechanism of the Type IIIProtein Export Apparatus. Structure, 27(6), 965-976.e6.https://doi.org/10.1016/j.str.2019.03.017.

  47. Johnson, S., Fong, Y. H., Deme, J. C., Furlong, E. J., Kuhlen,L. & Lea, S. M. (2020). Symmetry mismatch in the MSringof the bacterial flagellar rotor explains the structuralcoordination of secretion and rotation. Nature Microbiology,5(7), 966–975. https://doi.org/10.1038/s41564-020-0703-3.

  48. Johnson, S., Furlong, E. J., Deme, J. C., Nord, A. L., Caesar,J. J. E., Chevance, F. F. V., Berry, R. M., Hughes, K. T. &Lea, S. M. (2021). Molecular structure of the intact bacterialflagellar basal body. Nature Microbiology, 6(6), 712–721.https://doi.org/10.1038/s41564-021-00895-y.

  49. Jones, C. J., Homma, M. & Macnab, R. M. (1989). L-, P-, andM-ring proteins of the flagellar basal body of Salmonellatyphimurium: gene sequences and deduced proteinsequences. Journal of Bacteriology, 171(7), 3890–3900.https://doi.org/10.1128/jb.171.7.3890-3900.1989.

  50. Jones, C. J., Macnab, R. M., Okino, H. & Aizawa, S.-I. (1990).Stoichiometric Analysis of the Flagellar Hook-(Basal-Body)Complex of Salmonella typhimurium. Journal of MolecularBiology, 2(212), 377–387. https://doi.org/10.1016/0022-2836(90)90132-6.

  51. Kaplan, M., Oikonomou, C. M., Wood, C. R., Chreifi, G.,Subramanian, P., Ortega, D. R., Chang, Y., Beeby, M.,Shaffer, C. L. & Jensen, G. J. (2022). Novel transientcytoplasmic rings stabilize assembling bacterial flagellarmotors. The EMBO Journal, 41(e109523), 1-15. https://doi.org/10.15252/embj.2021109523.

  52. Kawamoto, A., Miyata, T., Makino, F., Kinoshita, M., Minamino,T., Imada, K., Kato, T. & Namba, K. (2021). Native flagellarMS ring is formed by 34 subunits with 23-fold and 11-foldsubsymmetries. Nature Communications, 12(1), 4223.https://doi.org/10.1038/s41467-021-24507-9.

  53. Khan, S., Dapice, M. & Reese, T. (1988). Effects of motgene expression on the structure of the flagellar motor.Journal of Molecular Biology, 202(3), 575-584. https://doi.org/10.1016/0022-2836(88)90287-2.

  54. Klose, K. E. & Mekalanos, J. J. (1998). Differential Regulationof Multiple Flagellins in Vibrio cholerae. Journal ofBacteriology, 180(2), 303–316. https://doi.org/10.1128/jb.180.2.303-316.1998.

  55. Kobayashi, K., Saitoh, T., Shah, D., Ohnishi, K., Goodfellow,I., Sockett, R. & Aizawa, S.-I. I. (2003). Purification andcharacterization of the flagellar basal body of Rhodobactersphaeroides. Journal of Bacteriology, 185(17), 5295–5300.https://doi.org/10.1128/jb.185.17.5295-5300.2003.

  56. Kuhlen, L., Abrusci, P., Johnson, S., Gault, J., Deme, J., Caesar,J., Dietsche, T., Mebrhatu, M. T., Ganief, T., Macek, B.,Wagner, S., Robinson, C. V. & Lea, S. M. (2018). Structureof the core of the type III secretion system export apparatus.Nature Structural & Molecular Biology, 25(7), 583–590.https://doi.org/10.1038/s41594-018-0086-9.

  57. Li, C., Wolgemuth, C., Marko, M., Morgan, D. & Charon, N.(2008). Genetic Analysis of Spirochete Flagellin Proteinsand Their Involvement in Motility, Filament Assembly, andFlagellar Morphology. Journal of Bacteriology, 190(16),5607–5615. https://doi.org/10.1128/jb.00319-08.

  58. Liu, J., Lin, T., Botkin, D. J., McCrum, E., Winkler, H. & Norris,S. J. (2009). Intact flagellar motor of Borrelia burgdorferirevealed by cryo-electron tomography: evidence for statorring curvature and rotor/C-ring assembly flexion. Journal ofBacteriology, 191(16), 5026–5036. https://doi.org/10.1128/jb.00340-09.

  59. Liu, R. & Ochman, H. (2007). Stepwise formation of the bacterialflagellar system. Proceedings of the National Academyof Sciences of the United States of America, 104(17),7116–7121. https://doi.org/10.1073/pnas.0700266104.

  60. Lynch, M. J., Levenson, R., Kim, E. A., Sircar, R., Blair, D. F.,Dahlquist, F. W., & Crane, B. R. (2017). Co-Folding of aFliF-FliG Split Domain Forms the Basis of the MS:C RingInterface within the Bacterial Flagellar Motor. Structure,25(2), 317–328. https://doi.org/10.1016/j.str.2016.12.006.

  61. Mariano, G., Faba-Rodriguez, R., Bui, S., Zhao, W., Ross, J.,Tzokov, S. B. & Bergeron, J. R. C. (2022). Oligomerizationof the FliF Domains Suggests a Coordinated Assemblyof the Bacterial Flagellum MS Ring. Frontiers inMicrobiology, 12(781960), 1-12. https://doi.org/10.3389/fmicb.2021.781960.61. Martínez, R. M., Dharmasena, M. N., Kirn, T. J. & Taylor, R. K.(2009). Characterization of two outer membrane proteins,FlgO and FlgP, that influence Vibrio cholerae motility.Journal of Bacteriology, 191(18), 5669–5679. https://doi.org/10.1128/jb.00632-09.

  62. Martínez, R. M., Jude, B. A., Kirn, T. J., Skorupski, K. & Taylor,R. K. (2010). Role of FlgT in anchoring the flagellum ofVibrio cholerae. Journal of Bacteriology, 192(8), 2085–2092. https://doi.org/10.1128/jb.01562-09.

  63. Matsunami, H., Barker, C. S., Yoon, Y.-H., Wolf, M. & Samatey,F. A. (2016). Complete structure of the bacterial flagellarhook reveals extensive set of stabilizing interactions. NatureCommunications, 7(13425), 1-10. https://doi.org/10.1038/ncomms13425.

  64. McMurry, J. L., Murphy, J. W. & González-Pedrajo, B. (2006).The FliN−FliH Interaction Mediates Localization of FlagellarExport ATPase FliI to the C Ring Complex. Biochemistry,45(39), 11790–11798. https://doi.org/10.1021/bi0605890.

  65. Miller, M. R., Miller, K. A., Bian, J., James, M. E., Zhang, S.,Lynch, M. J., Callery, P. S., Hettick, J. M., Cockburn, A., Liu,J., Li, C., Crane, B. R. & Charon, N. W. (2016). Spirochaeteflagella hook proteins self-catalyse a lysinoalanine covalentcrosslink for motility. Nature Microbiology, 1(16134), 1-8.https://doi.org/10.1038/nmicrobiol.2016.134.

  66. Milne-Davies, B., Wimmi, S. & Diepold, A. (2021). Adaptivityand dynamics in type III secretion systems. MolecularMicrobiology, 115(3), 395–411. https://doi.org/10.1111/mmi.14658.

  67. Minamino, T. & Namba, K. (2008). Distinct roles of the FliIATPase and proton motive force in bacterial flagellarprotein export. Nature, 451(7177), 485–488. https://doi.org/10.1038/nature06449.

  68. Minamino, T., Morimoto, Y. V., Hara, N. & Namba, K. (2011). Anenergy transduction mechanism used in bacterial flagellartype III protein export. Nature Communications, 2(475),1-9. https://doi.org/10.1038/ncomms1488.

  69. Minamino, T., Inoue, Y., Kinoshita, M. & Namba, K. (2019).FliK-driven conformational rearrangements of FlhA andFlhB are required for export switching of the flagellarprotein export apparatus. Journal of Bacteriology, 202(3),1-13. https://doi.org/10.1128/jb.00637-19.

  70. Minamino, T., Kinoshita, M. & Namba, K. (2022a). InsightInto Distinct Functional Roles of the Flagellar ATPaseComplex for Flagellar Assembly in Salmonella. Frontiersin Microbiology, 13(864178), 1-14. https://doi.org/10.3389/fmicb.2022.864178.

  71. Minamino, T., Kinoshita, M., Inoue, Y., Kitao, A. & Namba, K.(2022b). Conserved GYXLI Motif of FlhA Is Involved inDynamic Domain Motions of FlhA Required for FlagellarProtein Export. Microbiology Spectrum, 10(4), e01110-22.https://doi.org/10.1128/spectrum.01110-22.

  72. Moon, K., Zhao, X., Xu, H., Liu, J. & Motaleb, M. A. (2018).A Tetratricopeptide Repeat Domain Protein has ProfoundEffects on Assembly of Periplasmic Flagella, Morphology,and Motility of the Lyme disease spirochete Borreliaburgdorferi. Molecular Microbiology, 110(4), 634–647.https://doi.org/10.1111/mmi.14121.

  73. Moon, K., Zhao, X., Manne, A., Wang, J., Yu, Z., Liu, J. &Motaleb, M. A. (2016). Spirochetes flagellar collar proteinFlbB has astounding effects in orientation of periplasmicflagella, bacterial shape, motility, and assembly of motorsin Borrelia burgdorferi. Molecular Microbiology, 102(2),336–348. https://doi.org/10.1111/mmi.13463.

  74. Mora, J. de la, Ballado, T., González-Pedrajo, B., Camarena,L. & Dreyfus, G. (2007). The flagellar muramidase fromthe photosynthetic bacterium Rhodobacter sphaeroides.Journal of Bacteriology, 189(22), 7998–8004. https://doi.org/10.1128/jb.01073-07.

  75. Mot, D. R. & Vanderleyden, J. (1994). The C-terminal sequenceconservation between OmpA-related outer membraneproteins and MotB suggests a common function in bothGram-positive and Gram-negative bacteria, possibly inthe interaction of these domains with peptidoglycan.Molecular Microbiology, 12(2), 333-334. https://doi.org/10.1111/j.1365-2958.1994.tb00431.x.

  76. Motaleb, M., Sal, M. S., & Charon, N. W. (2004). TheDecrease in FlaA Observed in a flaB Mutant of Borreliaburgdorferi Occurs Posttranscriptionally. Journal ofBacteriology, 186(12), 3703-3711. https://doi.org/10.1128/jb.186.12.3703-3711.2004.

  77. Motaleb, M., Pitzer, J. E., Sultan, S. Z. & Liu, J. (2011). Anovel gene inactivation system reveals altered periplasmicflagellar orientation in a Borrelia burgdorferi fliL mutant.Journal of Bacteriology, 193(13), 3324–3331. https://doi.org/10.1128/jb.00202-11.

  78. Nakane, T., Kotecha, A., Sente, A., McMullan, G., Masiulis,S., Brown, P. M. G. E., Grigoras, I. T., Malinauskaite, L.,Malinauskas, T., Miehling, J., Uchański, T., Yu, L., Karia,D., Pechnikova, E. V., Jong, E. de, Keizer, J., Bischoff, M.,McCormack, J., Tiemeijer, P., Hardwick, S. W., Chirgadze,D. Y., Murshudov, G., Aricescu, A. R. & Scheres, S. H.W. (2020). Single-particle cryo-EM at atomic resolution.Nature, 587(7832), 152–156. https://doi.org/10.1038/s41586-020-2829-0.

  79. Namba, K., Yamashita, I. & Vonderviszt, F. (1989). Structureof the core and central channel of bacterial flagella. Nature,342(6250), 648–654. https://doi.org/10.1038/342648a0.

  80. Nambu, T. & Kutsukake, K. (2000). The Salmonella FlgAprotein, a putative periplasmic chaperone essential forflagellar P ring formation. Microbiology (Reading, England),146(Pt 5), 1171–1178. https://doi.org/10.1099/00221287-146-5-1171.

  81. Nord, A. L., Biquet-Bisquert, A., Abkarian, M., Pigaglio, T.,Seduk, F., Magalon, A. & Pedaci, F. (2022). Dynamicstiffening of the flagellar hook. Nature Communications,13(1), 2925. https://doi.org/10.1038/s41467-022-30295-7.

  82. Ohnishi, K., Ohto, Y., Aizawa, S., Macnab, R. M. & Iino, T.(1994). FlgD is a scaffolding protein needed for flagellarhook assembly in Salmonella typhimurium. Journal ofBacteriology, 176(8), 2272–2281. https://doi.org/10.1128/jb.176.8.2272-2281.1994.

  83. Pallen, M. J., Penn, C. W. & Chaudhuri, R. R. (2005). Bacterialflagellar diversity in the post-genomic era. Trends inMicrobiology, 13(4), 143–149. https://doi.org/10.1016/j.tim.2005.02.008.

  84. Paul, K., Brunstetter, D., Titen, S. & Blair, D. F. (2011).A molecular mechanism of direction switching in theflagellar motor of Escherichia coli. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 108(41), 17171–17176. https://doi.org/10.1073/pnas.1110111108.

  85. Paul, K., Erhardt, M., Hirano, T., Blair, D. F. & Hughes, K. T.(2008). Energy source of flagellar type III secretion. Nature,451(7177), 489–492. https://doi.org/10.1038/nature06497.

  86. Pérez-González, C., Domenzain, C., Poggio, S., González-Halphen, D., Dreyfus, G. & Camarena, L. (2018).Characterization of FlgP, an Essential Protein forFlagellar Assembly in Rhodobacter sphaeroides. Journalof Bacteriology, 201(5), 1-16. https://doi.org/10.1128/jb.00752-18.

  87. Pleier, E. & Schmitt, R. (1989). Identification and sequenceanalysis of two related flagellin genes in Rhizobium meliloti.Journal of Bacteriology, 171(3), 1467–1475. https://doi.org/10.1128/jb.171.3.1467-1475.1989.

  88. Pleier, E. & Schmitt, R. (1991). Expression of two Rhizobiummeliloti flagellin genes and their contribution to the complexfilament structure. Journal of Bacteriology, 173(6), 2077–2085. https://doi.org/10.1128/jb.173.6.2077-2085.1991.

  89. Ramírez-Cabrera, V., Poggio, S., Domenzain, C., Osorio, A.,Dreyfus, G. & Camarena, L. (2012). A novel componentof the Rhodobacter sphaeroides Fla1 flagellum is essentialfor motor rotation. Journal of Bacteriology, 194(22),6174–6183. https://doi.org/10.1128/jb.00850-12.

  90. Samatey, F. A., Matsunami, H., Imada, K., Nagashima, S.,Shaikh, T. R., Thomas, D. R., Chen, J. Z., DeRosier, D. J.,Kitao, A. & Namba, K. (2004). Structure of the bacterialflagellar hook and implication for the molecular universaljoint mechanism. Nature, 431(7012), 1062–1068. https://doi.org/10.1038/nature02997.

  91. Santiveri, M., Roa-Eguiara, A., Kühne, C., Wadhwa, N., Hu,H., Berg, H. C., Erhardt, M. & Taylor, N. M. I. (2020).Structure and Function of Stator Units of the BacterialFlagellar Motor. Cell, 183(1), 244-257.e16. https://doi.org/10.1016/j.cell.2020.08.016.

  92. Scharf, B., Schuster-Wolff-Buhring, H., Rachel, R. &Schmitt, R. (2001). Mutational Analysis of the Rhizobiumlupini H13-3 and Sinorhizobium meliloti FlagellinGenes: Importance of Flagellin A for Flagellar FilamentStructure and Transcriptional Regulation. Journal ofBacteriology, 183(18), 5334–5342. https://doi.org/10.1128/jb.183.18.5334-5342.2001.

  93. Shepherd, D. C., Dalvi, S. & Ghosal, D. (2022). From cells toatoms: Cryo-EM as an essential tool to investigate pathogenbiology, host–pathogen interaction, and drug discovery.Molecular Microbiology, 117(3), 610–617. https://doi.org/10.1111/mmi.14820.

  94. Smith, T. G. & Hoover, T. R. (2009). Deciphering bacterialflagellar gene regulatory networks in the genomic era.Advances in Applied Microbiology, 67, 257–295. https://doi.org/10.1016/s0065-2164(08)01008-3.

  95. Snyder, L. A. S., Loman, N. J., Fütterer, K. & Pallen, M. J.(2009). Bacterial flagellar diversity and evolution: seeksimplicity and distrust it? Trends in Microbiology, 17(1),1–5. https://doi.org/10.1016/j.tim.2008.10.002.

  96. Sommerlad, S. M. & Hendrixson, D. (2006). Analysis ofthe Roles of FlgP and FlgQ in Flagellar Motility ofCampylobacter jejuni. Journal of Bacteriology, 189(1),179–186. https://doi.org/10.1128/jb.01199-06.

  97. Suaste-Olmos, F., Domenzain, C., Mireles-Rodríguez, J. C.,Poggio, S., Osorio, A., Dreyfus, G. & Camarena, L. (2010).The flagellar protein FliL is essential for swimming inRhodobacter sphaeroides. Journal of Bacteriology, 192(23),6230–6239. https://doi.org/10.1128/jb.00655-10.

  98. Tachiyama, S., Chan, K. L., Liu, X., Hathroubi, S., Peterson,B., Khan, M. F., Ottemann, K. M., Liu, J. & Roujeinikova,A. (2022). The flagellar motor protein FliL forms a scaffoldof circumferentially positioned rings required for statoractivation. Proceedings of the National Academy of Sciencesof the United States of America, 119(4), e2118401119.https://doi.org/10.1073/pnas.2118401119.

  99. Takekawa, N., Isumi, M., Terashima, H., Zhu, S., Nishino, Y.,Sakuma, M., Kojima, S., Homma, M. & Imada, K. (2019).Structure of Vibrio FliL, a New Stomatin-like Protein ThatAssists the Bacterial Flagellar Motor Function. mBio, 10(2),1-13. https://doi.org/10.1128/mbio.00292-19.

  100. Takekawa, N., Kawamoto, A., Sakuma, M., Kato, T., Kojima,S., Kinoshita, M., Minamino, T., Namba, K., Homma, M.& Imada, K. (2021). Two Distinct Conformations in 34 FliFSubunits Generate Three Different Symmetries within theFlagellar MS-Ring. mBio, 12(2), e03199-20. https://doi.org/10.1128/mbio.03199-20.

  101. Tan, J., Zhang, X., Wang, X., Xu, C., Chang, S., Wu, H., Wang,T., Liang, H., Gao, H., Zhou, Y. & Zhu, Y. (2021). Structuralbasis of assembly and torque transmission of the bacterialflagellar motor. Cell, 184(10), 2665-2679.e19. https://doi.org/10.1016/j.cell.2021.03.057.

  102. Terashima, H., Fukuoka, H., Yakushi, T., Kojima, S. & Homma,M. (2006). The Vibrio motor proteins, MotX and MotY, areassociated with the basal body of Na-driven flagella andrequired for stator formation. Molecular Microbiology,62(4), 1170–1180. https://doi.org/10.1111/j.1365-2958.2006.05435.x.

  103. Terashima, H., Koike, M., Kojima, S. & Homma, M. (2010).The flagellar basal body-associated protein FlgT is essentialfor a novel ring structure in the sodium-driven Vibrio motor.Journal of Bacteriology, 192(21), 5609–5615. https://doi.org/10.1128/jb.00720-10.

  104. Thomson, N. M., Ferreira, J. L., Matthews-Palmer, T. R., Beeby,M. & Pallen, M. J. (2018a). Giant flagellins form thickflagellar filaments in two species of marine γ-proteobacteria.PLOS ONE, 13(11), e0206544. https://doi.org/10.1371/journal.pone.0206544.

  105. Thomson, N. M., Rossmann, F. M., Ferreira, J. L., Matthews-Palmer, T. R., Beeby, M. & Pallen, M. J. (2018b). BacterialFlagellins: Does Size Matter? Trends in Microbiology,26(7), 575–581. https://doi.org/10.1016/j.tim.2017.11.010.

  106. Thormann, K. M., Beta, C. & Kühn, M. J. (2022). Wrapped Up:The Motility of Polarly Flagellated Bacteria. Annual Reviewof Microbiology, 76(1), 349-367. https://doi.org/10.1146/annurev-micro-041122-101032.

  107. Tsang, J. & Hoover, T. R. (2014). Themes and Variations:Regulation of RpoN-Dependent Flagellar Genes acrossDiverse Bacterial Species. Scientifica, 2014, 681754. https://doi.org/10.1155/2014/681754.

  108. Ueno, T., Oosawa, K. & Aizawa, S.-I. (1992). M ring, S ringand proximal rod of the flagellar basal body of Salmonellatyphimurium are composed of subunits of a single protein,FliF. Journal of Molecular Biology, 227(3), 672–677. https://doi.org/10.1016/0022-2836(92)90216-7.

  109. Wadhwa, N. & Berg, H. C. (2022). Bacterial motility: machineryand mechanisms. Nature Reviews Microbiology, 20(3),161–173. https://doi.org/10.1038/s41579-021-00626-4.

  110. Ward, E., Kim, E. A., Panushka, J., Botelho, T., Meyer, T., Kearns,D. B., Ordal, G. & Blair, D. F. (2018). Organization of theFlagellar Switch Complex of Bacillus subtilis. Journalof Bacteriology, 201(8), 1-22. https://doi.org/10.1128/jb.00626-18.

  111. West, M. & Dreyfus, G. (1997). Isolation and ultrastructuralstudy of the flagellar basal body complex from Rhodobactersphaeroides WS8 (wild type) and a polyhook mutant PG.Biochemical and biophysical research communications,238(3), 733-737. https://doi.org/10.1006/bbrc.1997.7359.

  112. Xu, H., He, J., Liu, J. & Motaleb, M. A. (2019). BB0326 isresponsible for the formation of periplasmic flagellarcollar and the assembly of the stator complex in Borreliaburgdorferi. Molecular Microbiology, 113(2), 418-429.https://doi.org/10.1111/mmi.14428.

  113. Xu, H., Hu, B., Flesher, D. A., Liu, J. & Motaleb, M. A. (2021).BB0259 Encompasses a Peptidoglycan Lytic EnzymeFunction for Proper Assembly of Peiplasmic Flagellain Borrelia burgdorferi. Frontiers in Microbiology, 12,692707. https://doi.org/10.3389/fmicb.2021.692707.

  114. Xue, C., Lam, K. H., Zhang, H., Sun, K., Lee, S. H., Chen, X.& Au, S. W. N. (2018). Crystal structure of the FliF–FliGcomplex from Helicobacter pylori yields insight into theassembly of the motor MS–C ring in the bacterial flagellum.Journal of Biological Chemistry, 293(6), 2066–2078.https://doi.org/10.1074/jbc.M117.797936.

  115. Yonekura, K., Maki-Yonekura, S. & Namba, K. (2003). Completeatomic model of the bacterial flagellar filament by electroncryomicroscopy. Nature, 424(6949), 643–650. https://doi.org/10.1038/nature01830.

  116. Yoon, Y.-H., Barker, C. S., Bulieris, P. V., Matsunami, H. &Samatey, F. A. (2016). Structural insights into bacterialflagellar hooks similarities and specificities. ScientificReports, 6(1), 35552. https://doi.org/10.1038/srep35552.

  117. Zaloba, P., Bailey-Elkin, B. A., Derksen, M. & Mark, B. L.(2016). Structural and Biochemical Insights into thePeptidoglycan Hydrolase Domain of FlgJ from Salmonellatyphimurium. PLOS ONE, 11(2), e0149204. https://doi.org/10.1371/journal.pone.0149204.

  118. Zhou, J., Lloyd, S. & Blair, D. (1998). Electrostatic interactionsbetween rotor and stator in the bacterial flagellar motor.Proceedings of the National Academy of Sciences of theUnited States of America, 95(11), 6436-6441. https://doi.org/10.1073/pnas.95.11.6436.

  119. Zhu, S., Nishikino, T., Kojima, S., Homma, M. & Liu, J. (2018).The Vibrio H-ring facilitates the outer membrane penetrationof polar-sheathed flagellum. Journal of Bacteriology,200(21), 1-10. https://doi.org/10.1128/jb.00387-18.

  120. Zhu, S., Nishikino, T., Takekawa, N., Terashima, H., Kojima, S.,Imada, K., Homma, M. & Liu, J. (2019). In situ Structureof the Vibrio Polar Flagellum Reveals a Distinct OuterMembrane Complex and Its Specific Interaction with theStator. Journal of Bacteriology, 202(4), 1-12. https://doi.org/10.1128/jb.00592-19




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26

ARTíCULOS SIMILARES

CARGANDO ...