medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2023, Número 1

<< Anterior

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)


El AB“Y” de la fosforilación de tirosinas en bacterias: descripción de las enzimas implicadas y su impacto en la fisiología procarionte

Andrade Á, Alonso ÓM, Tavares-Carreón F
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 76
Paginas: 1-12
Archivo PDF: 417.31 Kb.


PALABRAS CLAVE

fosforilación en tirosinas, tirosina cinasa bacteriana, tirosina fosfatasa.

RESUMEN

La fosforilación de proteínas en residuos de serina, treonina y tirosina representa un paradigma central de la señalización celular. No obstante, en procariontes esta modificación postraduccional (MPT) fue desestimada durante varias décadas. Diversos estudios fosfoproteómicos bacterianos, así como la identificación y caracterización exhaustiva de las enzimas responsables de la fosforilación de proteínas en estos organismos ha derivado en una nueva visión del alcance regulatorio asociado a esta MPT. En particular, esta revisión se centra en la fosforilación en residuos de tirosina, las enzimas cinasas y fosfatasas implicadas en este proceso, su mecanismo de acción y el impacto de su actividad sobre la fisiología bacteriana.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Alifano, P., Fani, R., Lio, P., Lazcano, A., Bazzicalupo, M.,Carlomagno, M. S. & Bruni, C. B. (1996). Histidinebiosynthetic pathway and genes: structure, regulation,and evolution. Microbiol. Rev., 60, 44-69. DOI: 10.1128/mr.60.1.44-69.1996

  2. Alphonse, S., Djemil, I., Piserchio, A. & Ghose, R. (2022).Structural basis for the recognition of the bacterial tyrosinekinase Wzc by its cognate tyrosine phosphatase Wzb. Proc.Natl. Acad. Sci. U S A., 119, e2201800119. DOI: 10.1073/pnas.2201800119

  3. Andrade, A., Tavares-Carreon, F., Khodai-Kalaki, M. &Valvano, M. A. (2016). Tyrosine Phosphorylation andDephosphorylation in Burkholderia cenocepacia AffectBiofilm Formation, Growth under Nutritional Deprivation,and Pathogenicity. Appl. Environ. Microbiol., 82, 843-856.DOI: 10.1128/AEM.03513-15

  4. Bechet, E., Gruszczyk, J., Terreux, R., Gueguen-Chaignon,V., Vigouroux, A., Obadia, B., Cozzone, A. J., Nessler,S. & Grangeasse, C. (2010). Identification of structuraland molecular determinants of the tyrosine-kinase Wzcand implications in capsular polysaccharide export.Mol. Microbiol., 77, 1315-1325. DOI: 10.1111/j.1365-2958.2010.07291.x

  5. Bechet, E., Guiral, S., Torres, S., Mijakovic, I., Cozzone, A.J. & Grangeasse, C. (2009). Tyrosine-kinases in bacteria:from a matter of controversy to the status of key regulatoryenzymes. Amino Acids, 37, 499-507. DOI: 10.1007/s00726-009-0237-8

  6. Böhmer, F., Szedlacsek, S., Tabernero, L., Ostman, A. & DenHertog, J. (2013). Protein tyrosine phosphatase structurefunctionrelationships in regulation and pathogenesis. FEBSJ., 280, 413-431. DOI: 10.1111/j.1742-4658.2012.08655.x

  7. Bonne Kohler, J., Jers, C., Senissar, M., Shi, L., Derouiche, A.& Mijakovic, I. (2020). Importance of protein Ser/Thr/Tyrphosphorylation for bacterial pathogenesis. FEBS Lett., 594,2339-2369. DOI: 10.1002/1873-3468.13797

  8. Chao, J. D., Wong, D. & Av-Gay, Y. (2014). Microbial proteintyrosinekinases. J. Biol. Chem., 289, 9463-9472. DOI:10.1074/jbc.R113.520015

  9. Cirri, P., Chiarugi, P., Camici, G., Manao, G., Raugei, G.,Cappugi, G. & Ramponi, G. (1993). The role of Cys12,Cys17 and Arg18 in the catalytic mechanism of low-M(r)cytosolic phosphotyrosine protein phosphatase. Eur. J.Biochem., 214, 647-657. DOI: 10.1111/j.1432-1033.1993.tb17965.x

  10. Collins, R. F., Beis, K., Clarke, B. R., Ford, R. C., Hulley,M., Naismith, J. H. & Whitfield, C. (2006). Periplasmicprotein-protein contacts in the inner membrane proteinWzc form a tetrameric complex required for the assemblyof Escherichia coli group 1 capsules. J. Biol. Chem., 281,2144-2150. DOI: 10.1074/jbc.M508078200

  11. Cousin, C., Derouiche, A., Shi, L., Pagot, Y., Poncet, S. &Mijakovic, I. (2013). Protein-serine/threonine/tyrosinekinases in bacterial signaling and regulation. FEMSMicrobiol. Lett., 346, 11-19. DOI: 10.1111/1574-6968.12189

  12. Derouiche, A., Shi, L., Bidnenko, V., Ventroux, M., Pigonneau,N., Franz-Wachtel, M., Kalantari, A., Nessler, S., Noirot-Gros, M. F. & Mijakovic, I. (2015). Bacillus subtilis SalAis a phosphorylation-dependent transcription regulatorthat represses scoC and activates the production of theexoprotease AprE. Mol. Microbiol., 97, 1195-1208. DOI:10.1111/mmi.13098

  13. Dworkin, J. (2015). Ser/Thr phosphorylation as a regulatorymechanism in bacteria. Curr. Opin. Microbiol., 24, 47-52.DOI: 10.1016/j.mib.2015.01.005

  14. Ferreira, A.S., Silva, I. N., Oliveira, V. H., Becker, J. D.,Givskov, M., Ryan, R. P., Fernandes, F. & Moreira, L.M. (2013). Comparative transcriptomic analysis of theBurkholderia cepacia tyrosine kinase bceF mutant reveals arole in tolerance to stress, biofilm formation, and virulence.Appl. Environ. Microbiol., 79, 3009-3020. DOI: 10.1128/AEM.00222-13

  15. Ghodge, S. V., Fedorov, A. A., Fedorov, E. V., Hillerich, B.,Seidel, R., Almo, S. C. & Raushel, F. M. (2013). Structuraland mechanistic characterization of L-histidinol phosphatephosphatase from the polymerase and histidinol phosphatasefamily of proteins. Biochemistry, 52, 1101-1112. DOI:10.1021/bi301496p

  16. Ghodge, S. V. & Raushel, F.M. (2018). Structure, Mechanism,and Substrate Profiles of the Trinuclear Metallophosphatasesfrom the Amidohydrolase Superfamily. Methods Enzymol.,607, 187-216. DOI: 10.1016/bs.mie.2018.04.019

  17. Grangeasse, C., Cozzone, A. J., Deutscher, J. & Mijakovic, I.(2007). Tyrosine phosphorylation: an emerging regulatorydevice of bacterial physiology. Trends Biochem. Sci., 32,86-94. DOI: 10.1016/j.tibs.2006.12.004

  18. Grangeasse, C., Doublet, P., Vaganay, E., Vincent, C., Deléage,G., Duclos, B. & Cozzone, A. J. (1997). Characterization ofa bacterial gene encoding an autophosphorylating proteintyrosine kinase. Gene, 204, 259-265.

  19. Grangeasse, C., Doublet, P., Vincent, C., Vaganay, E.,Riberty, M., Duclos, B. & Cozzone, A. J. (1998).Functional characterization of the low-molecular-massphosphotyrosine-protein phosphatase of Acinetobacterjohnsonii. J. Mol. Biol., 278, 339-347. DOI: 10.1016/s0378-1119(97)00554-4

  20. Grangeasse, C., Nessler, S. & Mijakovic, I. (2012). Bacterialtyrosine kinases: evolution, biological function andstructural insights. Philos. Trans. R. Soc. Lond B Biol. Sci.,367, 2640-2655. DOI: 10.1098/rstb.2011.0424

  21. Grangeasse, C., Terreux, R. & Nessler, S. (2010). Bacterialtyrosine-kinases: structure-function analysis and therapeuticpotential. Biochim. Biophys. Acta, 1804, 628-634. DOI:10.1016/j.bbapap.2009.08.018

  22. Hajredini, F. & Ghose, R. (2021). An ATPase with a twist: Aunique mechanism underlies the activity of the bacterialtyrosine kinase, Wzc. Sci. Adv., 7, eabj5836. DOI: 10.1126/sciadv.abj5836

  23. Hansen, A. M., Chaerkady, R., Sharma, J., Díaz-Mejía, J.J., Tyagi, N., Renuse, S., Jacob, H. K., Pinto, S. M.,Sahasrabuddhe, N. A., Kim, M. S., Delanghe, B., Srinivasan,N., Emili, A., Kaper, J. B. & Pandey, A. (2013). TheEscherichia coli phosphotyrosine proteome relates to corepathways and virulence. PLoS Pathog., 9, e1003403. DOI:10.1371/journal.ppat.1003403

  24. Henriques, M. X., Rodrigues, T., Carido, M., Ferreira, L. &Filipe, S. R. (2011). Synthesis of capsular polysaccharideat the division septum of Streptococcus pneumoniae isdependent on a bacterial tyrosine kinase. Mol. Microbiol.,82, 515-534. DOI: 10.1111/j.1365-2958.2011.07828.x

  25. Horstmann, N., Saldaña, M., Sahasrabhojane, P., Yao, H.,Su, X., Thompson, E., Koller, A. & Shelburne, S. A.,3rd (2014). Dual-site phosphorylation of the control ofvirulence regulator impacts group a streptococcal globalgene expression and pathogenesis. PLoS Pathog., 10,e1004088. DOI: 10.1371/journal.ppat.1004088

  26. Hunter, T. (2014). The genesis of tyrosine phosphorylation.Cold Spring Harbor Perspectives in Biology, 6, a020644.DOI: 10.1101/cshperspect.a020644

  27. Ilan, O., Bloch, Y., Frankel, G., Ullrich, H., Geider, K. &Rosenshine, I. (1999). Protein tyrosine kinases in bacterialpathogens are associated with virulence and production ofexopolysaccharide. EMBO J., 18, 3241-3248. DOI: 10.1093/emboj/18.12.3241

  28. Jacob-Dubuisson, F., Mechaly, A., Betton, J. M. & Antoine, R.(2018). Structural insights into the signalling mechanismsof two-component systems. Nat. Rev. Microbiol., 16, 585-593. DOI: 10.1038/s41579-018-0055-7

  29. Jadeau, F., Bechet, E., Cozzone, A. J., Deléage, G., Grangeasse,C. & Combet, C. (2008). Identification of the idiosyncraticbacterial protein tyrosine kinase (BY-kinase) familysignature. Bioinformatics, 24, 2427-2430. DOI: 10.1093/bioinformatics/btn462

  30. Jadeau, F., Grangeasse, C., Shi, L., Mijakovic, I., Deleage, G. &Combet, C. (2012). BYKdb: the Bacterial protein tYrosineKinase database. Nucleic Acids Res., 40, D321-324. DOI:10.1093/nar/gkr915

  31. Kannan, N., Taylor, S. S., Zhai, Y., Venter, J. C. & Manning,G. (2007). Structural and functional diversity of themicrobial kinome. PLoS Biol., 5, e17. DOI: 10.1371/journal.pbio.0050017

  32. Kolmodin, K. & Åqvist, J. (2001). The catalytic mechanism ofprotein tyrosine phosphatases revisited. FEBS Lett., 498,208-213. DOI: 10.1016/s0014-5793(01)02479-6

  33. Kusebauch, U., Ortega, C., Ollodart, A., Rogers, R. S., Sherman,D. R., Moritz, R. L. & Grundner, C. (2014). Mycobacteriumtuberculosis supports protein tyrosine phosphorylation.Proc. Natl. Acad. Sci. U S A, 111, 9265-9270. DOI: 10.1073/pnas.1323894111

  34. Lacour, S., Bechet, E., Cozzone, A. J., Mijakovic, I. &Grangeasse, C. (2008). Tyrosine phosphorylation of theUDP-glucose dehydrogenase of Escherichia coli is atthe crossroads of colanic acid synthesis and polymyxinresistance. PLoS One, 3, e3053. DOI: 10.1371/journal.pone.0003053

  35. Lee, D. C. & Jia, Z. (2009). Emerging structural insights intobacterial tyrosine kinases. Trends Biochem. Sci., 34, 351-357. DOI: 10.1016/j.tibs.2009.03.003

  36. Lee, D. C., Zheng, J., She, Y. M. & Jia, Z. (2008). Structureof Escherichia coli tyrosine kinase Etk reveals a novelactivation mechanism. EMBO J., 27, 1758-1766. DOI:10.1038/emboj.2008.97

  37. Leipe, D. D., Koonin, E. V. & Aravind, L. (2003). Evolutionand classification of P-loop kinases and related proteins. J.Mol. Biol., 333, 781-815. DOI: 10.1016/j.jmb.2003.08.040

  38. Libby, E. A., Goss, L. A. & Dworkin, J. (2015). The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRKTwo-Component System in Bacillus subtilis. PLoS Genet.,11, e1005275. DOI: 10.1371/journal.pgen.1005275

  39. Liu, C., Miller, D. P., Wang, Y., Merchant, M. & Lamont, R. J.(2017). Structure-function aspects of the Porphyromonasgingivalis tyrosine kinase Ptk1. Mol. Oral Microbiol., 32,314-323. DOI: 10.1111/omi.12173

  40. Ma, L., King, G. F. & Rothfield, L. (2004). Positioning of theMinE binding site on the MinD surface suggests a plausiblemechanism for activation of the Escherichia coli MinDATPase during division site selection. Mol. Microbiol., 54,99-108. DOI: 10.1111/j.1365-2958.2004.04265.x

  41. Macek, B., Forchhammer, K., Hardouin, J., Weber-Ban, E.,Grangeasse, C. & Mijakovic, I. (2019). Protein posttranslationalmodifications in bacteria. Nat. Rev. Microbiol.,17, 651-664. DOI: 10.1038/s41579-019-0243-0

  42. Manuse, S., Fleurie, A., Zucchini, L., Lesterlin, C. & Grangeasse,C. (2016). Role of eukaryotic-like serine/threonine kinasesin bacterial cell division and morphogenesis. FEMSMicrobiol. Rev., 40, 41-56. DOI: 10.1093/femsre/fuv041

  43. Mijakovic, I., Grangeasse, C. & Turgay, K. (2016). Exploringthe diversity of protein modifications: special bacterialphosphorylation systems. FEMS Microbiol. Rev., 40, 398-417. DOI: 10.1093/femsre/fuw003

  44. Mijakovic, I., Petranovic, D., Macek, B., Cepo, T., Mann, M.,Davies, J., Jensen, P. R. & Vujaklija, D. (2006). Bacterialsingle-stranded DNA-binding proteins are phosphorylatedon tyrosine. Nucleic Acids Res., 34, 1588-1596. DOI:10.1093/nar/gkj514

  45. Mijakovic, I., Poncet, S., Boël, G., Mazé, A., Gillet, S.,Jamet, E., Decottignies, P., Grangeasse, C., Doublet, P.,Le Marechal, P. & Deutscher, J. (2003). Transmembranemodulator-dependent bacterial tyrosine kinase activatesUDP-glucose dehydrogenases. EMBO J., 22, 4709-4718.DOI: 10.1093/emboj/cdg458

  46. Morona, J. K., Morona, R., Miller, D. C. & Paton, J. C. (2002).Streptococcus pneumoniae capsule biosynthesis proteinCpsB is a novel manganese-dependent phosphotyrosineproteinphosphatase. J. Bacteriol., 184, 577-583. DOI:10.1128/JB.184.2.577-583.2002

  47. Morona, J. K., Morona, R., Miller, D. C. & Paton, J. C. (2003).Mutational analysis of the carboxy-terminal (YGX)4repeat domain of CpsD, an autophosphorylating tyrosinekinase required for capsule biosynthesis in Streptococcuspneumoniae. J. Bacteriol.,185, 3009-3019. DOI: 10.1128/JB.185.10.3009-3019.2003

  48. Nagarajan, S. N., Lenoir, C. & Grangeasse, C. (2022). Recentadvances in bacterial signaling by serine/threonine proteinkinases. Trends Microbiol., 30, 553-566. DOI: 10.1016/j.tim.2021.11.005

  49. Nakamoto, R., Kwan, J. M. C., Chin, J. F. L., Ong, H. T.,Flores-Kim, J., Midonet, C., Vannieuwenhze, M. S., Guan,X. L. & Sham, L. T. (2021). The bacterial tyrosine kinasesystem CpsBCD governs the length of capsule polymers.Proc. Natl. Acad. Sci. U S A, 118 (45), e2103377118. DOI:10.1073/pnas.2103377118

  50. Nguyen, H. A., El Khoury, T., Guiral, S., Laaberki, M. H.,Candusso, M. P., Galisson, F., Foucher, A. E., Kesraoui,S., Ballut, L., Vallet, S., Orelle, C., Zucchini, L., Martin, J.,Page, A., Attieh, J., Aghajari, N., Grangeasse, C. & Jault, J.M. (2017). Expanding the Kinome World: A New ProteinKinase Family Widely Conserved in Bacteria. J. Mol. Biol.,429, 3056-3074. DOI: 10.1016/j.jmb.2017.08.016

  51. Nourikyan, J., Kjos, M., Mercy, C., Cluzel, C., Morlot, C., Noirot-Gros, M. F., Guiral, S., Lavergne, J. P., Veening, J. W. &Grangeasse, C. (2015). Autophosphorylation of the BacterialTyrosine-Kinase CpsD Connects Capsule Synthesis with theCell Cycle in Streptococcus pneumoniae. PLoS Genet.,11,e1005518. DOI: 10.1371/journal.pgen.1005518

  52. Olivares-Illana, V., Meyer, P., Bechet, E., Gueguen-Chaignon,V., Soulat, D., Lazereg-Riquier, S., Mijakovic, I.,Deutscher, J., Cozzone, A. J., Laprevote, O., Morera, S.,Grangeasse, C. & Nessler, S. (2008). Structural basis forthe regulation mechanism of the tyrosine kinase CapB fromStaphylococcus aureus. PLoS Biol., 6, e143. DOI: 10.1371/journal.pbio.0060143

  53. Paiment, A., Hocking, J. & Whitfield, C. (2002). Impactof phosphorylation of specific residues in the tyrosineautokinase, Wzc, on its activity in assembly of group 1capsules in Escherichia coli. J Bacteriol., 184, 6437-6447.DOI: 10.1128/JB.184.23.6437-6447.2002

  54. Pan, Z., Wang, B., Zhang, Y., Wang, Y., Ullah, S., Jian, R., Liu,Z. & Xue, Y. (2015). dbPSP: a curated database for proteinphosphorylation sites in prokaryotes. Database (Oxford)2015, bav031. DOI: 10.1093/database/bav031

  55. Pelletier, A., Freton, C., Gallay, C., Trouve, J., Cluzel, C.,Franz-Wachtel, M., Macek, B., Jault, J. M., Grangeasse,C. & Guiral, S. (2019). The Tyrosine-Autokinase UbK IsRequired for Proper Cell Growth and Cell Morphology ofStreptococcus pneumoniae. Front. Microbiol.,10, 1942.DOI: 10.3389/fmicb.2019.01942

  56. Pereira, S. F., Goss, L. & Dworkin, J. (2011). Eukaryote-likeserine/threonine kinases and phosphatases in bacteria.Microbiol. Mol. Biol. Rev., 75, 192-212. DOI: 10.1128/MMBR.00042-10

  57. Pichoff, S. & Lutkenhaus, J. (2007). Identification of a regionof FtsA required for interaction with FtsZ. Mol. Microbiol.,64, 1129-1138. DOI: 10.1111/j.1365-2958.2007.05735.x

  58. Rajpurohit, Y. S., Bihani, S. C., Waldor, M. K. & Misra, H.S. (2016). Phosphorylation of Deinococcus radioduransRecA Regulates Its Activity and May Contribute toRadioresistance. J. Biol. Chem., 291, 16672-16685. DOI:10.1074/jbc.M116.736389

  59. Rausch, M., Deisinger, J. P., Ulm, H., Muller, A., Li, W., Hardt,P., Wang, X., Li, X., Sylvester, M., Engeser, M., Vollmer,W., Muller, C. E., Sahl, H. G., Lee, J. C. & Schneider, T.(2019). Coordination of capsule assembly and cell wallbiosynthesis in Staphylococcus aureus. Nat. Commun., 10,1404. DOI: 10.1038/s41467-019-09356-x

  60. Robertson, C.D ., Hazen, T. H., Kaper, J. B., Rasko, D. A.& Hansen, A. M. (2018). Phosphotyrosine-MediatedRegulation of Enterohemorrhagic Escherichia coliVirulence. mBio, 9(1), e00097-18. DOI: 10.1128/mBio.00097-18

  61. Rosen, B. P., Bhattacharjee, H., Zhou, T. & Walmsley, A.R. (1999). Mechanism of the ArsA ATPase. BiochimBiophys Acta, 1461, 207-215. DOI: 10.1016/s0005-2736(99)00159-5

  62. Schastnaya, E., Raguz Nakic, Z., Gruber, C. H., Doubleday,P. F., Krishnan, A., Johns, N. I., Park, J., Wang, H. H. &Sauer, U. (2021). Extensive regulation of enzyme activityby phosphorylation in Escherichia coli. Nat. Commun.,12,5650. DOI: 10.1038/s41467-021-25988-4

  63. Schwechheimer, C., Hebert, K., Tripathi, S., Singh, P. K., Floyd,K. A., Brown, E. R., Porcella, M. E., Osorio, J., Kiblen, J.T. M., Pagliai, F. A., Drescher, K., Rubin, S. M. & Yildiz,F. H. (2020). A tyrosine phosphoregulatory system controlsexopolysaccharide biosynthesis and biofilm formationin Vibrio cholerae. PLoS Pathog., 16, e1008745. DOI:10.1371/journal.ppat.1008745

  64. Seibert, C .M. & Raushel, F. M. (2005). Structural andcatalytic diversity within the amidohydrolase superfamily.Biochemistry, 44, 6383-6391. DOI: 10.1021/bi047326v

  65. Shi, L., Ravikumar, V., Derouiche, A., Macek, B. & Mijakovic,I. (2016). Tyrosine 601 of Bacillus subtilis DnaK UndergoesPhosphorylation and Is Crucial for Chaperone Activityand Heat Shock Survival. Front. Microbiol., 7, 533. DOI:10.3389/fmicb.2016.00533

  66. Shi, Y., Zhang, Y., Lin, S., Wang, C., Zhou, J., Peng, D. &Xue, Y. (2020). dbPSP 2.0, an updated database of proteinphosphorylation sites in prokaryotes. Sci. Data., 7, 164.DOI: 10.1038/s41597-020-0506-7

  67. Standish, A. J., Teh, M. Y., Tran, E. N. H., Doyle, M. T., Baker,P. J. & Morona, R. (2016). Unprecedented Abundanceof Protein Tyrosine Phosphorylation Modulates Shigellaflexneri Virulence. J. Mol. Biol., 428, 4197-4208. DOI:10.1016/j.jmb.2016.06.016

  68. Stock, A. M., Robinson, V. L. & Goudreau, P. N. (2000). Twocomponentsignal transduction. Annu. Rev. Biochem., 69,183-215. DOI: 10.1146/annurev.biochem.69.1.183

  69. Sun, X., Ge, F., Xiao, C. L., Yin, X. F., Ge, R., Zhang, L. H. &He, Q. Y. (2010). Phosphoproteomic analysis reveals themultiple roles of phosphorylation in pathogenic bacteriumStreptococcus pneumoniae. J. Proteome Res., 9, 275-282.DOI: 10.1021/pr900612v

  70. Taddei, N., Chiarugi, P., Cirri, P., Fiaschi, T., Stefani, M., Camici,G., Raugei, G. & Ramponi, G. (1994). Aspartic-129 is anessential residue in the catalytic mechanism of the low M(r)phosphotyrosine protein phosphatase. FEBS Lett., 350,328-332. DOI: 10.1016/0014-5793(94)00805-1

  71. Temel, D. B., Dutta, K., Alphonse, S., Nourikyan, J.,Grangeasse, C. & Ghose, R. (2013). Regulatoryinteractions between a bacterial tyrosine kinase and itscognate phosphatase. J. Biol. Chem., 288, 15212-15228.DOI: 10.1074/jbc.M113.457804

  72. Thomasson, B., Link, J., Stassinopoulos, A. G., Burke, N.,Plamann, L. & Hartzell, P. L. (2002). MglA, a small GTPase,interacts with a tyrosine kinase to control type IV pilimediatedmotility and development of Myxococcus xanthus.Mol. Microbiol., 46, 1399-1413. DOI: 10.1046/j.1365-2958.2002.03258.x

  73. Vincent, C., Doublet, P., Grangeasse, C., Vaganay, E., Cozzone,A. J. & Duclos, B. (1999). Cells of Escherichia coli containa protein-tyrosine kinase, Wzc, and a phosphotyrosineproteinphosphatase, Wzb. J. Bacteriol., 181, 3472-3477.DOI: 10.1128/JB.181.11.3472-3477.1999

  74. Whitmore, S. E. & Lamont, R. J. (2012). Tyrosinephosphorylation and bacterial virulence. Int. J. Oral Sci.,4, 1-6. DOI: 10.1038/ijos.2012.6

  75. Zhang, Z. Y., Wang, Y., Wu, L., Fauman, E. B., Stuckey, J. A.,Schubert, H. L., Saper, M. A. & Dixon, J. E. (1994). TheCys(X)5Arg catalytic motif in phosphoester hydrolysis.Biochemistry, 33, 15266-15270. DOI: 10.1021/bi00255a007

  76. Zhao, X. & Lam, J. S. (2002). WaaP of Pseudomonas aeruginosais a novel eukaryotic type protein-tyrosine kinase as wellas a sugar kinase essential for the biosynthesis of corelipopolysaccharide. J. Biol. Chem., 277, 4722-4730. DOI:10.1074/jbc.M107803200




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26

ARTíCULOS SIMILARES

CARGANDO ...