2024, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2024; 43 (4)
Función y regulación del modulador negativo del ciclo celular Wee1, una visión histórica y avances más recientes
López-Hernández MN, Guerrero-Molina ED, Romero-Rodríguez S, Vázquez-Ramos JM
Idioma: Español
Referencias bibliográficas: 125
Paginas: 245-265
Archivo PDF: 1035.42 Kb.
RESUMEN
Wee1 es una cinasa que regula negativamente la progresión del ciclo celular mediante la fosforilación de un residuo de tirosina altamente conservado en las cinasas dependientes de ciclina (CDKs), cuya actividad es necesaria para la progresión del ciclo celular. Wee1 se descubrió hace más de 50 años en levaduras de fisión, cuando mutantes en el gen mostraron células con un fenotipo pequeñito (wee), ya que éstas avanzaron prematuramente a la mitosis, incluso con DNA dañado, y fueron incapaces de detener la progresión del ciclo celular, por lo que se dividieron a un menor tamaño. Wee1 se ha descrito en un gran número de eucariontes y se ha determinado que, en la mayoría de ellos, controla la transición G2/M, además numerosos experimentos han demostrado que Wee1 es necesaria para la salida de mitosis y la transición G1/S; sin embargo, no existe una revisión sistemática de la función de Wee1 en cada transición del ciclo celular. En esta revisión se describen los experimentos que establecieron que Wee1 es un regulador clave de la transición G2/M y el papel de Wee1 en la salida de mitosis y en la transición G1/S, donde la actividad de Wee1 evita el inicio desregulado de la replicación y daño en el DNA. Además, se describe en cada punto de regulación, los principales mecanismos que han sido descritos para favorecer la activación o la inactivación de Wee1. Finalmente, se comenta de qué manera se ha aprovechado el papel de Wee1 en las diferentes transiciones del ciclo celular para generar estrategias para el tratamiento del cáncer.
REFERENCIAS (EN ESTE ARTÍCULO)
Morgan DO. The cell cycle: Principles ofcontrol. Londres, Inglaterra. New Science Press;2007.
Buchanan BB, Gruissem W, Jones RL,editores. Biochemistry and molecular biology ofplants. 2a ed. Hoboken, NJ, Estados Unidos deAmérica: Wiley-Blackwell; 2015.
Nolen B, Taylor S, Ghosh G. Regulation ofprotein kinases; controlling activity throughactivation segment conformation. Mol Cell.2004;15(5):661–75.
Poon RY, Yamashita K, Adamczewski JP,Hunt T, Shuttleworth J. The cdc2-related proteinp40MO15 is the catalytic subunit of a protein kinasethat can activate p33cdk2 and p34cdc2. EMBO J.1993;12(8):3123–32.
Fisher RP, Morgan DO. A novel cyclinassociates with M015/CDK7 to form the CDK-activating kinase. Cell. 1994;78(4):713–24.
Ettl T, Schulz D, Bauer RJ. The renaissance ofcyclin dependent kinase inhibitors. Cancers (Basel).2022;14(2):293.
Honda R, Ohba Y, Yasuda H. The cell cycleregulator, human p50weel, is a tyrosine kinase andnot a serine/tyrosine kinase. Biochem Biophys ResCommun. 1992;186(3):1333–8.
Parker LL, Atherton-Fessler S, Piwnica-Worms H. P107wee1 is a dual-specificity kinasethat phosphorylates p34cdc2 on tyrosine 15. ProcNatl Acad Sci U S A. 1992;89(7):2917–21.
Watanabe N, Broome M, Hunter T. Regulationof the human WEE1Hu CDK tyrosine 15-kinaseduring the cell cycle. EMBO J. 1995;14(9):1878–91.
Liu F, Stanton JJ, Wu Z, Piwnica-Worms H.The human Myt1 kinase preferentiallyphosphorylates Cdc2 on threonine 14 and localizesto the endoplasmic reticulum and Golgi complex.Mol Cell Biol. 1997;17(2):571–83.
Mueller PR, Coleman TR, Kumagai A,Dunphy WG. Myt1: a membrane-associatedinhibitory kinase that phosphorylates Cdc2 on boththreonine-14 and tyrosine-15. Science.1995;270(5233):86–90.
Nakanishi M, Ando H, Watanabe N, KitamuraK, Ito K, Okayama H, et al. Identification andcharacterization of human Wee1B, a new memberof the Wee1 family of Cdk-inhibitory kinases:Identification and characterization of humanWee1B. Genes Cells. 2000;5(10):839–47.
Han SJ, Chen R, Paronetto MP, Conti M.Wee1B is an oocyte-specific kinase involved in thecontrol of meiotic arrest in the mouse. Curr Biol.2005;15(18):1670–6.
Oh JS, Han SJ, Conti M. Wee1B, Myt1, andCdc25 function in distinct compartments of themouse oocyte to control meiotic resumption. J CellBiol. 2010;188(2):199–207.
Adhikari D, Busayavalasa K, Zhang J, Hu M,Risal S, Bayazit MB, et al. Inhibitoryphosphorylation of Cdk1 mediates prolongedprophase I arrest in female germ cells and isessential for female reproductive lifespan. Cell Res.2016;26(11):1212–25.
Alberts B, Johnson A, Lewis J, Morgan D,Raff M, Roberts K, Walter P The Cell-DivisionCycle. In: Molecular biology of the cell. 5a ed.Londres, Inglaterra: Garland Science; 2015. p.609-649.
Oh JS, Susor A, Conti M. Protein tyrosinekinase Wee1B is essential for metaphase II exit inmouse oocytes. Science. 2011;332(6028):462–5.
Squire CJ, Dickson JM, Ivanovic I, Baker EN.Structure and inhibition of the human cell cyclecheckpoint kinase, Wee1A kinase: an atypicaltyrosine kinase with a key role in CDK1 regulation.Structure. 2005;13(4):541–50.
Welburn JPI, Tucker JA, Johnson T, Lindert L,Morgan M, Willis A, et al. How tyrosine 15phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem.2007;282(5):3173–81.
Nurse P. Genetic control of cell size at celldivision in yeast. Nature. 1975;256(5518):547–51.
Thuriaux P, Nurse P, Carter B. Mutants alteredin the control co-ordinating cell division with cellgrowth in the fission yeast Schizosaccharomycespombe. Mol Gen Genet. 1978;161(2):215–20.
Nurse P.Weebeasties. Nature. 2004;432(7017):557.
Gould KL, Moreno S, Tonks NK, Nurse P.Complementation of the mitotic activator,p80cdc25, by a human protein-tyrosinephosphatase. Science. 1990;250(4987):1573–6.
Lee MS, Enoch T, Piwnica-Worms H. Mik1+encodes a tyrosine kinase that phosphorylatesp34cdc2 on tyrosine 15. J Biol Chem.1994;269(48):30530–7.
Lundgren K, Walworth N, Booher R, DembskiM, Kirschner M, Beach D. Mik1 and wee1cooperate in the inhibitory tyrosine phosphorylationof cdc2. Cell. 1991;64(6):1111–22.
Nurse P, Bissett Y. Gene required in G1 forcommitment to cell cycle and in G2 for control ofmitosis in fission yeast. Nature.1981;292(5823):558–60.
Lowndes NF, Johnson AL, Johnston LH.Coordination of expression of DNA synthesis genesin budding yeast by a cell-cycle regulated transfactor. Nature. 1991;350(6315):247–50.
Lowndes NF, McInerny CJ, Johnson AL,Fantes PA, Johnston LH. Control of DNA synthesisgenes in fission yeast by the cell-cycle gene cdc10+.Nature. 1992;355(6359):449–53.
Igarashi M, Nagata A, Jinno S, Suto K,Okayama H. Wee1(+)-like gene in human cells.Nature. 1991;353(6339):80–3.
Campbell SD, Sprenger F, Edgar BA,O’Farrell PH. Drosophila Wee1 kinase rescuesfission yeast from mitotic catastrophe andphosphorylates Drosophila Cdc2 in vitro. Mol BiolCell. 1995;6(10):1333–47.
Mueller PR, Coleman TR, Dunphy WG. Cellcycle regulation of a Xenopus Wee1-like kinase.Mol Biol Cell. 1995;6(1):119–34.
Krek W, Nigg EA. Mutations of p34cdc2phosphorylation sites induce premature mitoticevents in HeLa cells: evidence for a double block top34cdc2 kinase activation in vertebrates. EMBO J.1991;10(11):3331–41.
McGowan CH, Russell P. Cell cycle regulationof human WEE1. EMBO J. 1995;14(10):2166–7.
Parker LL, Sylvestre PJ, Byrnes MJ 3rd, Liu F,Piwnica-Worms H. Identification of a 95-kDaWEE1-like tyrosine kinase in HeLa cells. Proc NatlAcad Sci U S A. 1995;92(21):9638–42.
Gabrielli BG, De Souza CP, Tonks ID, ClarkJM, Hayward NK, Ellem KA. Cytoplasmicaccumulation of cdc25B phosphatase in mitosistriggers centrosomal microtubule nucleation inHeLa cells. J Cell Sci. 1996;109 ( Pt 5)(5):1081–93.
Sanchez Y, Wong C, Thoma RS, Richman R,Wu Z, Piwnica-Worms H, et al. Conservation of theChk1 checkpoint pathway in mammals: linkage ofDNA damage to Cdk regulation through Cdc25.Science. 1997;277(5331):1497–501.
Peng CY, Graves PR, Thoma RS, Wu Z, ShawAS, Piwnica-Worms H. Mitotic and G2 checkpointcontrol: regulation of 14-3-3 protein binding byphosphorylation of Cdc25C on serine-216. Science.1997;277(5331):1501–5.
Lammer C, Wagerer S, Saffrich R, Mertens D,Ansorge W, Hoffmann I. The cdc25B phosphataseis essential for the G2/M phase transition in humancells. J Cell Sci. 1998;111 ( Pt 16)(16):2445–53.
Blomberg I, Hoffmann I. Ectopic expression ofCdc25A accelerates the G(1)/S transition and leadsto premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol.1999;19(9):6183–94.
Boutros R, Dozier C, Ducommun B. The whenand wheres of CDC25 phosphatases. Curr Opin CellBiol. 2006;18(2):185–91.
Honda R, Tanaka H, Ohba Y, Yasuda H.Mouse p87wee1 kinase is regulated by M-phasespecific phosphorylation. Chromosome Res.1995;3(5):300–8.
Michael WM, Newport J. Coupling of mitosisto the completion of S phase through Cdc34-mediated degradation of Wee1. Science.1998;282(5395):1886–9.
Ayad NG, Rankin S, Murakami M,Jebanathirajah J, Gygi S, Kirschner MW. Tome-1, atrigger of mitotic entry, is degraded during G1 viathe APC. Cell. 2003;113(1):101–13.
Smith A, Simanski S, Fallahi M, Ayad NG.Redundant ubiquitin ligase activities regulate wee1degradation and mitotic entry. Cell Cycle.2007;6(22):2795–9.
Li M, Zhang P. The function of APC/CCdh1 incell cycle and beyond. Cell Div. 2009;4(1):2.
Watanabe N, Arai H, Iwasaki J-I, Shiina M,Ogata K, Hunter T, et al. Cyclin-dependent kinase(CDK) phosphorylation destabilizes somatic Wee1via multiple pathways. Proc Natl Acad Sci U S A.2005;102(33):11663–8.
Penas C, Ramachandran V, Simanski S, Lee C,Madoux F, Rahaim RJ, et al. Casein kinase 1δ-dependent Wee1 protein degradation. J Biol Chem.2014;289(27):18893–903.
Watanabe N, Arai H, Nishihara Y, TaniguchiM, Watanabe N, Hunter T, et al. M-phase kinasesinduce phospho-dependent ubiquitination ofsomatic Wee1 by SCFbeta-TrCP. Proc Natl AcadSci U S A. 2004;101(13):4419–24.
Lowery DM, Lim D, Yaffe MB. Structure andfunction of Polo-like kinases. Oncogene.2005;24(2):248–59.
Owens L, Simanski S, Squire C, Smith A,Cartzendafner J, Cavett V, et al. Activation domain-dependent degradation of somatic Wee1 kinase. JBiol Chem. 2010;285(9):6761–9.
Li C, Andrake M, Dunbrack R, Enders GH. Abifunctional regulatory element in human somaticWee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export. Mol Cell Biol.2010;30(1):116–30.
Schulman BA, Lindstrom DL, Harlow E.Substrate recruitment to cyclin-dependent kinase 2by a multipurpose docking site on cyclin A. ProcNatl Acad Sci U S A. 1998;95(18):10453–8.
Xu D, Li C. Gene 33/Mig6/ERRFI1, anadapter protein with complex functions in cellbiology and human diseases. Cells.2021;10(7):1574.
Sasaki M, Terabayashi T, Weiss SM, Ferby I.The tumor suppressor MIG6 controls mitoticprogression and the G2/M DNA damage checkpointby stabilizing the WEE1 kinase. Cell Rep.2018;24(5):1278–89.
Touati SA, Hofbauer L, Jones AW, SnijdersAP, Kelly G, Uhlmann F. Cdc14 and PP2Aphosphatases cooperate to shape phosphoproteomedynamics during mitotic exit. Cell Rep.2019;29(7):2105-2119.e4.
Ovejero S, Ayala P, Bueno A, Sacristán MP.Human Cdc14A regulates Wee1 stability bycounteracting CDK-mediated phosphorylation. MolBiol Cell. 2012;23(23):4515–25.
Vázquez-Novelle MD, Mailand N, Ovejero S,Bueno A, Sacristán MP. Human Cdc14Aphosphatase modulates the G2/M transition throughCdc25A and Cdc25B. J Biol Chem.2010;285(52):40544–53.
Okamoto K, Sagata N. Mechanism forinactivation of the mitotic inhibitory kinase Wee1 atM phase. Proc Natl Acad Sci U S A.2007;104(10):3753–8.
Kim SY, Song EJ, Lee K-J, Ferrell JE Jr.Multisite M-phase phosphorylation of XenopusWee1A. Mol Cell Biol. 2005;25(23):10580–90.
Kim SY, Ferrell JE Jr. Substrate competitionas a source of ultrasensitivity in the inactivation ofWee1. Cell. 2007;128(6):1133–45.
Harvey SL, Charlet A, Haas W, Gygi SP,Kellogg DR. Cdk1-dependent regulation of themitotic inhibitor Wee1. Cell. 2005;122(3):407–20.
Deibler RW, Kirschner MW. Quantitativereconstitution of mitotic CDK1 activation insomatic cell extracts. Mol Cell. 2010;37(6):753–67.
Gong D, Ferrell JE Jr. The roles of cyclin A2,B1, and B2 in early and late mitotic events. Mol BiolCell. 2010;21(18):3149–61.
Fung TK, Ma HT, Poon RYC. Specializedroles of the two mitotic cyclins in somatic cells:Cyclin A as an activator of M phase–promotingfactor. Mol Biol Cell. 2007;18(5):1861–73.
Pagano M, Pepperkok R, Verde F, Ansorge W,Draetta G. Cyclin A is required at two points in thehuman cell cycle. EMBO J. 1992;11(3):961–71.
Guadagno TM, Newport JW. Cdk2 kinase isrequired for entry into mitosis as a positive regulatorof Cdc2-cyclin B kinase activity. Cell.1996;84(1):73–82.
Hu B, Mitra J, van den Heuvel S, Enders GH.S and G2 phase roles for Cdk2 revealed by inducibleexpression of a dominant-negative mutant in humancells. Mol Cell Biol. 2001;21(8):2755–66.
Devault A, Fesquet D, Cavadore JC, GarriguesAM, Labbé JC, Lorca T, et al. Cyclin A potentiatesmaturation-promoting factor activation in the earlyXenopus embryo via inhibition of the tyrosinekinase that phosphorylates cdc2. J Cell Biol.1992;118(5):1109–20.
Hégarat N, Crncec A, Suarez PeredoRodriguez MF, Echegaray Iturra F, Gu Y, Busby O,et al. Cyclin A triggers Mitosis either via theGreatwall kinase pathway or Cyclin B. EMBO J.2020;39(11):e104419.
Gu Y, Rosenblatt J, Morgan DO. Cell cycleregulation of CDK2 activity by phosphorylation ofThr160 and Tyr15. EMBO J. 1992;11(11):3995–4005.
Gabrielli BG, Clark JM, McCormack AK,Ellem KA. Hyperphosphorylation of the N-terminaldomain of Cdc25 regulates activity toward cyclinB1/Cdc2 but not cyclin A/Cdk2. J Biol Chem.1997;272(45):28607–14.
Goldstone S, Pavey S, Forrest A, Sinnamon J,Gabrielli B. Cdc25-dependent activation of cyclinA/cdk2 is blocked in G2 phase arrested cellsindependently of ATM/ATR. Oncogene.2001;20(8):921–32.
Baldin V, Ducommun B. Subcellularlocalisation of human wee1 kinase is regulatedduring the cell cycle. J Cell Sci. 1995;108 (Pt6)(6):2425–32.
Gavet O, Pines J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and thecytoplasm at mitosis. J Cell Biol. 2010;189(2):247–59.
Boutros R, Ducommun B. Asymmetriclocalization of the CDC25B phosphatase to themother centrosome during interphase. Cell Cycle.2008;7(3):401–6.
Grallert A, Patel A, Tallada VA, Chan KY,Bagley S, Krapp A, et al. Centrosomal MPF triggersthe mitotic and morphogenetic switches of fissionyeast. Nat Cell Biol. 2013;15(1):88–95.
Basu S, Roberts EL, Jones AW, Swaffer MP,Snijders AP, Nurse P. The hydrophobic patchdirects cyclin B to centrosomes to promote globalCDK phosphorylation at mitosis. Curr Biol.2020;30(5):883-892.e4.
Lin M, Xie SS, Chan KY. An updated view onthe centrosome as a cell cycle regulator. Cell Div.2022;17(1):1.
D’Angiolella V, Palazzo L, Santarpia C,Costanzo V, Grieco D. Role for non-proteolyticcontrol of M-phase-promoting factor activity at M-phase exit. PLoS One. 2007;2(2):e247.
Rudner AD, Murray AW. Phosphorylation byCdc28 activates the Cdc20-dependent activity of theanaphase-promoting complex. J Cell Biol.2000;149(7):1377–90.
Yudkovsky Y, Shteinberg M, Listovsky T,Brandeis M, Hershko A. Phosphorylation ofCdc20/fizzy negatively regulates the mammaliancyclosome/APC in the mitotic checkpoint. BiochemBiophys Res Commun. 2000;271(2):299–304.
D’Angiolella V, Mari C, Nocera D, Rametti L,Grieco D. The spindle checkpoint requires cyclin-dependent kinase activity. Genes Dev.2003;17(20):2520–5.
Visconti R, Palazzo L, Della Monica R, GriecoD.Fcp1-dependent dephosphorylation is requiredfor M-phase-promoting factor inactivation atmitosis exit. Nat Commun. 2012;3(1):894.
Chow JPH, Poon RYC, Ma HT. Inhibitoryphosphorylation of cyclin-dependent kinase 1 as acompensatory mechanism for mitosis exit. Mol CellBiol. 2011;31(7):1478–91.
Potapova TA, Daum JR, Byrd KS, GorbskyGJ. Fine tuning the cell cycle: activation of the Cdk1inhibitory phosphorylation pathway during mitoticexit. Mol Biol Cell. 2009;20(6):1737–48.
Gabrielli BG, Lee MS, Walker DH, Piwnica-Worms H, Maller JL. Cdc25 regulates thephosphorylation and activity of the Xenopus cdk2protein kinase complex. J Biol Chem.1992;267(25):18040–6.
Sebastian B, Kakizuka A, Hunter T. Cdc25M2activation of cyclin-dependent kinases bydephosphorylation of threonine-14 and tyrosine-15.Proc Natl Acad Sci U S A. 1993;90(8):3521–4.
Zhao H, Chen X, Gurian-West M, Roberts JM.Loss of cyclin-dependent kinase 2 (CDK2)inhibitory phosphorylation in a CDK2AF knock-inmouse causes misregulation of DNA replication andcentrosome duplication. Mol Cell Biol.2012;32(8):1421–32.
Hughes BT, Sidorova J, Swanger J, Monnat RJJr, Clurman BE. Essential role for Cdk2 inhibitoryphosphorylation during replication stress revealedby a human Cdk2 knockin mutation. Proc Natl AcadSci U S A. 2013;110(22):8954–9.
Domínguez-Kelly R, Martín Y, KoundrioukoffS, Tanenbaum ME, Smits VAJ, Medema RH, et al.Wee1 controls genomic stability during replicationby regulating the Mus81-Eme1 endonuclease. J CellBiol. 2011;194(4):567–79.
Beck H, Nähse V, Larsen MSY, Groth P,Clancy T, Lees M, et al. Regulators of cyclin-dependent kinases are crucial for maintaininggenome integrity in S phase. J Cell Biol.2010;188(5):629–38.
Beck H, Nähse-Kumpf V, Larsen MSY,O’Hanlon KA, Patzke S, Holmberg C, et al. Cyclin-dependent kinase suppression by WEE1 kinaseprotects the genome through control of replicationinitiation and nucleotide consumption. Mol CellBiol. 2012;32(20):4226–36.
D’Angiolella V, Donato V, Forrester FM,Jeong Y-T, Pellacani C, Kudo Y, et al. Cyclin F-mediated degradation of ribonucleotide reductaseM2 controls genome integrity and DNA repair. Cell.2012;149(5):1023–34.
Pfister SX, Markkanen E, Jiang Y, Sarkar S,Woodcock M, Orlando G, et al. Inhibiting WEE1selectively kills histone H3K36me3-deficientcancers by dNTP starvation. Cancer Cell.2015;28(5):557–68.
Wroble BN, Finkielstein CV, Sible JC. Wee1kinase alters cyclin E/Cdk2 and promotes apoptosisduring the early embryonic development ofXenopus laevis. BMC Dev Biol. 2007;7(1):119.
Naim V, Wilhelm T, Debatisse M, Rosselli F.ERCC1 and MUS81-EME1 promote sisterchromatid separation by processing late replicationintermediates at common fragile sites duringmitosis. Nat Cell Biol. 2013;15(8):1008–15.
Minocherhomji S, Ying S, Bjerregaard VA,Bursomanno S, Aleliunaite A, Wu W, et al.Replication stress activates DNA repair synthesis inmitosis. Nature. 2015;528(7581):286–90.
Duda H, Arter M, Gloggnitzer J, Teloni F,Wild P, Blanco MG, et al. A mechanism forcontrolled breakage of under-replicated chromosomes during mitosis. Dev Cell. 2016;39(6):740–55.
De Witt Hamer PC, Mir SE, Noske D, VanNoorden CJF, Würdinger T. WEE1 kinase targetingcombined with DNA-damaging cancer therapycatalyzes mitotic catastrophe. Clin Cancer Res.2011;17(13):4200–7.
Abuetabh Y, Wu HH, Chai C, Al Yousef H,Persad S, Sergi CM, et al. DNA damage responserevisited: the p53 family and its regulators provideendless cancer therapy opportunities. Exp Mol Med.2022;54(10):1658–69.
Mir SE, De Witt Hamer PC, Krawczyk PM,Balaj L, Claes A, Niers JM, et al. In silico analysisof kinase expression identifies WEE1 as agatekeeper against mitotic catastrophe inglioblastoma. Cancer Cell. 2010;18(3):244–57.
Kim H-Y, Cho Y, Kang H, Yim Y-S, Kim S-J,Song J, et al. Targeting the WEE1 kinase as amolecular targeted therapy for gastric cancer.Oncotarget. 2016;7(31):49902–16.
Bieker JJ. Krüppel-like factors: Three fingersin many pies. J Biol Chem. 2001;276(37):34355–8.
Wang F, Zhu Y, Huang Y, McAvoy S, JohnsonWB, Cheung TH, et al. Transcriptional repression ofWEE1 by Kruppel-like factor 2 is involved in DNAdamage-induced apoptosis. Oncogene.2005;24(24):3875–85.
Taghehchian N, Maharati A, Akhlaghipour I,Zangouei AS, Moghbeli M. PRC2 mediated KLF2down regulation: a therapeutic and diagnostic axisduring tumor progression. Cancer Cell Int.2023;23(1).
Do K, Doroshow JH, Kummar S. Wee1 kinaseas a target for cancer therapy. Cell Cycle.2013;12(19):3159–64.
Syljuåsen RG, Sørensen CS, Hansen LT,Fugger K, Lundin C, Johansson F, et al. Inhibitionof human Chk1 causes increased initiation of DNAreplication, phosphorylation of ATR targets, andDNA breakage. Mol Cell Biol. 2005;25(9):3553–62.
Petermann E, Maya-Mendoza A, Zachos G,Gillespie DAF, Jackson DA, Caldecott KW. Chk1requirement for high global rates of replication forkprogression during normal vertebrate S phase. MolCell Biol. 2006;26(8):3319–26.
Petermann E, Woodcock M, Helleday T. Chk1promotes replication fork progression bycontrolling replication initiation. Proc Natl Acad SciU S A. 2010;107(37):16090–5.
Maya-Mendoza A, Petermann E, GillespieDAF, Caldecott KW, Jackson DA. Chk1 regulatesthe density of active replication origins during thevertebrate S phase. EMBO J. 2007;26(11):2719–31.
Elbæk CR, Petrosius V, Benada J, Erichsen L,Damgaard RB, Sørensen CS. WEE1 kinase protectsthe stability of stalled DNA replication forks bylimiting CDK2 activity. Cell Rep.2022;38(3):110261.
Moiseeva T, Hood B, Schamus S, O’ConnorMJ, Conrads TP, Bakkenist CJ. ATR kinaseinhibition induces unscheduled origin firing througha Cdc7-dependent association between GINS andAnd-1. Nat Commun. 2017;8(1):1392.
Zou L, Stillman B. Assembly of a complexcontaining Cdc45p, replication protein A, andMcm2p at replication origins controlled by S-phasecyclin-dependent kinases and Cdc7p-Dbf4p kinase.Mol Cell Biol. 2000;20(9):3086–96.
Hauge S, Naucke C, Hasvold G, Joel M,Rødland GE, Juzenas P, et al. Combined inhibitionof Wee1 and Chk1 gives synergistic DNA damagein S-phase due to distinct regulation of CDK activityand CDC45 loading. Oncotarget. 2017;8(7):10966–79.
Zhang Y, Zhou J, Lim CU. The role of NBS1in DNA double strand break repair, telomerestability, and cell cycle checkpoint control. CellRes. 2006;16(1):45–54.
McCord RA, Michishita E, Hong T, Berber E,Boxer LD, Kusumoto R, et al. SIRT6 stabilizesDNA-dependent protein kinase at chromatin forDNA double-strand break repair. Aging (AlbanyNY). 2009;1(1):109–21.
Bonilla B, Hengel SR, Grundy MK, BernsteinKA. RAD51 gene family structure and function.Annu Rev Genet. 2020;54(1):25–46.
Chen G, Zhang B, Xu H, Sun Y, Shi Y, Luo Y,et al. Suppression of Sirt1 sensitizes lung cancercells to WEE1 inhibitor MK-1775-induced DNAdamage and apoptosis. Oncogene.2017;36(50):6863–72.
Zhu J-Y, Cuellar RA, Berndt N, Lee HE,Olesen SH, Martin MP, et al. Structural basis ofWee kinases functionality and inactivation bydiverse small molecule inhibitors. J Med Chem.2017;60(18):7863–75.
Wright G, Golubeva V, Remsing Rix LL,Berndt N, Luo Y, Ward GA, et al. Dual targeting ofWEE1 and PLK1 by AZD1775 elicits single agentcellular anticancer activity. ACS Chem Biol.2017;12(7):1883–92.
Bondeson DP, Mares A, Smith IED, Ko E,Campos S, Miah AH, et al. Catalytic in vivo proteinknockdown by small-molecule PROTACs. NatChem Biol. 2015;11(8):611–7.
Aublette MC, Harrison TA, Thorpe EJ, GaddMS. Selective Wee1 degradation by PROTACdegraders recruiting VHL and CRBN E3 ubiquitinligases. Bioorg Med Chem Lett.2022;64(128636):128636.
Liu X, Sanada E, Li J, Li X, Osada H,Watanabe N. Isolation and characterization of β-transducin repeat-containing protein ligandsscreened using a high-throughput screening system.Oncol Res. 2023;31(5):645–54.
Lal S, Burkhart RA, Beeharry N, BhattacharjeeV, Londin ER, Cozzitorto JA, et al. HuRposttranscriptionally regulates WEE1: Implicationsfor the DNA damage response in pancreatic cancercells. Cancer Res. 2014;74(4):1128–40.
Fisher D, Krasinska L. Explaining redundancyin CDK-mediated control of the cell cycle: Unifyingthe continuum and quantitative models. Cells.2022;11(13):2019.