medigraphic.com
ENGLISH

Revista de Endocrinología y Nutrición

ISSN 0188-9796 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2003, Número 3

<< Anterior Siguiente >>

Rev Endocrinol Nutr 2003; 11 (3)


Recambio proteínico interórgano

Hernández AA, Pasquetti CA, Zúñiga RA, Meléndez MG
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 62
Paginas: 129-135
Archivo PDF: 88.37 Kb.


PALABRAS CLAVE

Recambio proteínico, síntesis, degradación..

RESUMEN

El recambio proteínico interórgano es un mecanismo que permite utilizar en forma más eficiente los aminoácidos indispensables y mantener un balance entre la síntesis y la degradación proteínica a través de la cooperación de los diferentes órganos del cuerpo humano.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Gougeon R, Hoffer L J, Pencharz PB, Marliss EB. Protein metabolism in obese subjects during a very-low-energy diet. Am J Clin Nutr 1992; 56(suppl): 249S-254S.

  2. Essen P, McNurlan MA, Wernerman J et al. Short-term starvation decreases skeletal muscle protein synthesis rate in man. Clin Physiol 1992; 12: 287-299.

  3. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 1997; 273: E122-E129.

  4. Borsheim E, Tipton KD, Wolf SE, Wolf RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 2002; 283: E648-E657.

  5. Haussinger D, Roth E, Lang F, Gerok W. Cellular hydration state: an important determinant of protein catabolism in health and diseases. Lancet 1993; 341: 1330-1332.

  6. Vandenburgh HH, Karlisch P, Shansky J, Feldstein R. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol 1991; 260: C475-C484.

  7. De Feo, Volpi E, Lucidi P et al. Physiological increments in plasma insulin concentrations have selective and different effects on synthesis of hepatic protein in humans. Diabetes 1992; 42: 995-1002.

  8. Caso G, Ford GC, Nair KS et al. Aminocyl-tRNA enrichment after a flood of labeled phenylalanine: insulin effect on muscle protein synthesis. Am J Physiol Endocrinol Metab 2002; 282-E1029-E1038.

  9. Boirie Y, KR, Ahlman B et al. Tissue-specific regulation of mitochondrial and cytoplasmic protein synthesis rates by insulin. Diabetes 2001; 50: 2652-2658.

  10. Wing SS, Banville D. 14-kDa-ubiquitin-conjugating enzyme: structure of the rat gene and regulation upon fasting and by insulin. Am J Physiol 1994; 267-E39-E48.

  11. Larbaud D, Balage M, Taillandier D et al. Differential regulation of the lysosomal, Ca2+ -dependent and ubiquitin/proteasome-dependent proteolytic pathways in fast-twitch and slow-twitch rat muscle following hyperinsulinaemia. Clin Sci (Lond) 2001; 101: 551-558.

  12. Herman M, Berger P. Hormonal changes in aging men: a therapeutic indication? Exp Gerontol 2001; 36: 1075-1082.

  13. Urban RJ, Bodenburg YH, Gilkison C et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 1995; 269: E820-E826.

  14. Brillon DJ, Zheng B, Campbell RG, Matthews DE. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol 1995; 268: E501-E513.

  15. Fernando AA, Stuart CA, Sheffield-Moore M, Wolfe RR. Inactivity amplifies the catabolic response of skeletal muscle to cortisol. J Clin Endocrinol Metab 1999; 84: 3515-3521.

  16. Morrison WL, Gibson JN, Jung RT, Rennie MJ. Skeletal muscle and whole body protein turnover in thyroid disease. Eur J Clin Invest 1998; 18: 62-68.

  17. Rochon C, Tauveron I, Dejax C et al. Response of leucine metabolism to hyperinsulinemia in hypothyroid patients before and after thyroxine replacement. J Clin Endocrinol Metab 2000; 85: 697-706.

  18. Short KR, Nygren J, Barazzoni R et al. T3 increases mitochondrial ATP production in oxidative but not glycolytic muscle despite increased expression of UCP-2 and -3. Am J Physiol Endocrinol Metab 2001; 280: E761-E766.

  19. Hesketh JE, Campbell GP, Lobley GE et al. Stimulation of actin and myosin synthesis in rat gastrocnemius muscle by clenbuterol; evidence for translational control. Comp Biochem Physiol C 1992; 102: 23-27.20. Fryburg DA, Gelfand RA, Jahn LA et al. Effects of epinephrine on human muscle glucose and protein metabolism. Am J Physiol 1995; 268: E55-E59.

  20. Navegantes LC, Resano NM, Migliorini RH, Kettelhut IC. Catecholamines inhibit Ca(2+)-dependent proteolysis in rat skeletal muscle through beta (2)-adrenoceptors and cAMP. Am J Physiol Endocrinol Metab 2001; 281 E449-E454.

  21. Herndon DN, Hart DW, Wolf SE et al. Reversal of catabolism by betablockade after severe burns. N Engl J Med 2001; 345: 1223-1229.

  22. Fryburg DA. NG-monomethyl-I-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF-I: possible role of nitric oxide in muscle protein synthesis. J Clin Invest 1996; 97: 1319-1328.

  23. Straumann E, Keller U, Kury D et al. Effect of acute acidosis and alkalosis on leucine kinetics in man. Clin Physiol 1992; 12: 39-51.

  24. Garibotto G, Russo R, Sofia A et al. Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int 1994; 45: 1432-1439.

  25. Frost RA, Lang CH, Gelato MC. Transient exposure of human myoblasts to tumor necrosis factor alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis. Endocrinology 1997; 1384: 4153-4159.

  26. Lang CH, Nystrom GJ, Frost RA. Tissue-specific regulation of IGF-I and IGF-binding proteins in response to TNF alpha. Growth Horm IGF Res 2001; 11: 250-260.

  27. Sakurai Y, Zhag XJ, Wolfe R. TNF directly stimulates glucose uptake and leucine oxidation and inhibits FFA flux in conscious dogs. Am J Physiol 1996; 270: 864-872.

  28. Charters Y, Grimble RF. Effects of recombinant human tumor necrosis factor-alpha on protein synthesis in liver, skeletal muscle and skin of rats. Biochem J 1989; 258: 493-497.

  29. Llovera M, Garcia-Martinez C, Agell N et al. TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscle. Biochem Biophys Res Commun 1997; 230: 238-241.

  30. Du J, Mitch WE, Wang X, Price SR. Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-kappa B. J Biol Chem 2000; 275-19961-19666.

  31. Combaret L, Tilignac T, Claustre A et al. Torbafylline (HWA 448) inhibits enhanced skeletal muscle ubiquitin-proteasome-dependent proteolysis in cancer and septic rats. Biochem J 2002; 361: 185-192.

  32. Tisdale MJ. Loss of skeletal muscle in cancer: biochemical mechanisms. Front Biosci 2001; 6: D164-D174.

  33. Biolo G, Fleming RY, Maggi SP et al. Inverse regulation of protein turnover and amino acid transport in skeletal muscle of hypercatabolic patients. J Clin Endocrinol Metab 2002; 87: 3378-3384.

  34. Tessari P, Inchiostro S, Biolo G et al. Differential effects of hyperinsulinemia and hyperaminoacidemia on leucine-carbon metabolism in vivo. Evidence for distinct mechanisms in regulation of net amino acid deposition. J Clin Invest 1987; 79: 1062-1069.

  35. Sakurai Y, Aarsland A, Herndon DN et al. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg 1995; 222: 283-294.

  36. Biolo G, Declan Fleming RY, Wolfe RR. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 1995; 95: 881-819.

  37. Kadowaki M, Kanazawa T. Amino acids as regulators of proteolysis. J Nutr 2003; 133(6 Suppl 1): 2052S-2056S.

  38. Attaix D, Combaret L, Pouch MN, Taillandier D. Proteasome Ubiquitin System. Curr Opin Clin Nutr Metab Care 2002; 4(1): 45-9.

  39. Elwyn DH, Parikh HC, Shoemaker WC. Amino acid movements between gut, liver, and periphery in unanesthetized dogs. Am J Physiol 1968; 215(5): 1260-75.

  40. Bloxam DI. Nutritional aspects of amino acid metabolism. The effects of starvation on hepatic portal-venous differences in plasma amino acid concentration and on liver amino acid concentrations in the rat. Br J Nutr 1972; 27(2): 233-47.

  41. Felig P, Wahren J, Ahlborg G. Evidence of inter-organ amino acids transport by blood cells in man. Proc Nat Acad Sci 1973; 70: 1775-9.

  42. Windmueller JC, Spaeth AE. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for post-absorptive rat small intestine. J Biol Chem 1978; 253: 67-76.

  43. Owen EE, Robinson RR. Amino acid extraction and ammonia metabolism in the human kidney during the prolonged administration of ammonium chloride. J Clin Invest 1963; 42: 263-76.

  44. Tessari P, Deferrari G, Robaudo C et al. Phenylalanine hydroxylation across the kidney in humans. Kidney Int 1999; 56: 2168-2172.

  45. Moller N, Meek S, Bigelow M et al. The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: a metabolic role of the kidney. Proc Natl Acad Sci USA 2000; 97: 1242-1246.

  46. Chang TW, Golberg AL. Regulation and significance of amino acid metabolism in skeletal muscle. Fed Proc 1978; 37(9): 2301-7.

  47. Haverberg LN, Deckelbaum L, Bilmazes C, Munro HN, Young VR. Myofibrillar protein turnover and urinary N-tau-methylhistidine output. Response to dietary supply of protein and energy. Biochem J 1975; 152(3): 503-110.

  48. Haussinger D, Graf D, Weiergraber OH. Glutamina and cell signaling in liver. J Nutr 2001; 131(9 Suppl): 2509S-14S.

  49. Kenney FT. In: Mammalian protein metabolism (Munro, H: N:, De.) 1970; 4: 131-176, Academic Press, New York.

  50. Mortimore GE, Ward WF. In: Lysosomas in biology and pathology (Dingle JT and Dean RT, eds.), North-Holland, Amsterdam 1976; 5: 157-184.

  51. Dean MF, Muir H, Benson PF, Button LR, Batchelor JR, Bewick M. Increased breakdown of glycosaminoglycans and appearance of corrective enzyme after skin transplants in Hunter syndrome. Nature 1975: 257(5527): 609-12.

  52. Pain VM, Garlick PJ. Related articles, effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J Biol Chem 1974; 249(14): 4510-4.

  53. Jefferson LS, Korner A. Influence of amino acid supply on ribosomes and protein synthesis of perfused rat liver. Biochem J 1969; 111(5): 703-12.

  54. Woodside et al. Effects of glucagon on general protein degradation and synthesis in perfused rat liver. J Biol Chem 1974; 249(17): 5458-63.

  55. Guarnieri G, Antoinione R, Biolo G. Mechanism of malnutrition in uremia. J Ren Nutr 2003; 13(2): 153-7.

  56. Mortimore GE, Ward WF. In: Lysosomes in biology and pathology (Dingle JT and Dean RT Editors), North Holland, Amsterdam. 1976; 5: 157-184,

  57. Griffin EE, Wildenthal K. Regulation of cardiac protein balance by hydrocortisone: interaction with insulin. Am J Physiol 1978; 234(3): E306-13.

  58. Fulks RM, Li JB, Goldberg AL. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem 1975; 250(1): 290-8.

  59. Jefferson LS, Schworer CM, Tolman EL. Growth hormone stimulation of amino acid transport and utilization by the perfused rat liver. J Biol Chem 1975; 250(1): 197-204.

  60. Blomstrand E, Saltin B. BCAA intake affects protein metabolism in muscle after but during exercise in humans. Am J Physiol Endocrinol Metab 2001; 281: E365-E374.

  61. Bevington A, Brown J. Leucine suppresses acid-induced protein wasting in L6 rat muscle cells. Eur L Clin Invest 2001; 31: 497-503.

  62. Zinna EM, Yarasheski KE. Exercise treatment to counteract protein wasting of chronic diseases. Curr Opin Nutr Care Jan 2003; 6(1): 87-93.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Endocrinol Nutr. 2003;11

ARTíCULOS SIMILARES

CARGANDO ...