medigraphic.com
ENGLISH

Salud Mental

Órgano Oficial del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2006, Número 5

Salud Mental 2006; 29 (5)


Dependencia de los sistemas de memoria al ciclo luz-oscuridad en la expresión de estrategias adaptativas. Segunda parte

Rueda-Orozco PE, Montes-Rodríguez CJ, Soria-Gómez E, Herrera-Solís A, Guzmán K, Prospéro-García A, Ruiz-Contreras AE, Prospéro-García O
Texto completo Cómo citar este artículo

Idioma: Español
Referencias bibliográficas: 63
Paginas: 49-58
Archivo PDF: 102.98 Kb.


PALABRAS CLAVE

Estrategia, hipocampo, estriado, amígdala, corteza prefrontal, ciclo luz-oscuridad.

RESUMEN

En la primera parte de esta revisión nos encargamos de revisar al hipocampo y al estriado en el contexto de los sistemas de memoria. En esta parte revisaremos las bases anatómicas y fisiológicas de los sistemas de memoria representados por la amígdala y la corteza prefrontal así como su participación en la expresión de estrategias para la solución de problemas específicos (estrategias adaptativas). En este apartado haremos hincapié en las funciones básicas que se le atribuyen a estas estructuras, su participación en la expresión de estrategias adaptativas y la influencia que ejercen sobre otros sistemas de memoria como el hipocampal y el estriatal. Aquí revisamos el papel de la amígdala como modulador del hipocampo y el estriado. También revisamos los conceptos de memoria de trabajo y anticipación como las principales funciones de la corteza prefrontal o neocorteza y su relación con los otros sistemas de memoria. Finalmente revisamos la bibliografía disponible acerca de los ritmos circadianos y su relación con la memoria. Haremos énfasis en la función del hipocampo. Nosotros creemos que estudiar las relaciones mencionadas puede ser una herramienta útil para comprender cómo es que el medio ambiente influencia la conducta.
Conclusiones. Cuando un sujeto es sometido a un problema determinado, éste puede solucionarlo con diferentes estrategias. La génesis y expresión de las estrategias depende de la interacción de diferentes estructuras cerebrales, entre ellas las estructuras relacionadas con los procesos de memoria. Los diferentes sistemas de memoria procesan y almacenan diferentes tipos de información. Esta información es el sustento que utiliza el cerebro, probablemente la corteza prefrontal, para la generación de las estrategias adaptativas. Por otro lado existe información que sugiere que el ciclo luz-oscuridad modula la actividad de las diferentes estructuras mencionadas. Esto implicaría que la conducta, la forma como un sujeto se adapta a su medio, estaría a su vez matizada por el ciclo luz-oscuridad.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. AMMASSARI-TEULE M, MARSANICH B: Spatial and visual discrimination learning in CD1 mice: partial analogy between the effect of lesions to the hippocampus and the amygdala. Physiol Behav, 60:256-71, 1996.

  2. BADDELEY A: Working memory: Looking back and looking forward. Nature Reviews, 4:829-39, 2003.

  3. BADDLEY A: Modulatory, mass-action and memory. Q J Exp Psychol A, 38:527-33, 1986.

  4. BARBAS H, BLATT GJ: Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus, 5: 511-33, 1995.

  5. BOULOS Z, ROSENWASSER AM, TERMAN M: Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res, 1:39-45, 1980.

  6. BRUNEL S, MONTIGNY C: Diurnal rhytms in the responsiveness of hippocampal pyramidal neurons to serotonin, norepinephrine, gamma aminobutyric acid and acetylcholine. Brain Res Bull, 18:205-12, 1987.

  7. BUZSAKI G: Two-stage model of memory trace formation: a role for “noisy” brain states. Neursocience, 31: 551-570, 1989.

  8. CAULLER LJ, BOULOS Z, GODDARD GV : Circadian rythms in hippocampal responsiveness to perforant path stimulation and their relation to behavioral state. Brain Res, 329:117-130, 1985.

  9. CHAFEE MV, GOLDMAN-RAKIC PS: Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol, 83:1550-66, 2000.

  10. CHAFEE MV, GOLDMAN-RAKIC PS: Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol, 79:2919-40, 1998.

  11. CHAUDHURY D, COLWELL CS: Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res, 133:95-108, 2002.

  12. COURTNEY SM, PETIT L, MAISOG JM, UNGERLEIDER LG, HAXABY JV: An area specialized for working memory in human frontal cortex. Science, 279:1347-51, 1998.

  13. DEVAN BD, GOAD EH, PETRI HL, ANTONIADIS EA, HONG NS, KO CH y cols.: Circadian phase-shifted rats show normal acquisition but impaired long-term retention of place information in the water task. Neurobiol Learning Memory, 75:51-62, 2001.

  14. DUNCAN J, SEITZ RJ, KOLODNY J, BOR D y cols.: A neural basis for general intelligence. Science, 289:457-60, 2000.

  15. FOLKARD S: Diurnal variation in logical reasoning. Br J Psychol, 66:1-8, 1975.

  16. FUNAHASHI S, BRUCE CJ, GOLDMAN-RAKIC PS: Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol, 61:331-49, 1989.

  17. FUNAHASHI S: Neuronal mechanisms of executive control by the prefrontal cortex. Neuroscience Res, 39:147-65, 2001.

  18. FUSTER JM: Executive frontal functions. Exp Brain Res, 133:66-70, 2000.

  19. FUSTER JM: Frontal lobe and cognitive development. J Neurocytology, 31:373-85, 2002.

  20. FUSTER JM: The prefrontal cortex – An update: Time is of the essence. Neuron, 30:319-333, 2001.

  21. GALLAGHER M, KAPP BS, MUSTY RE, DRISCOLL PA: Memory formation: evidence for a specific neurochemical system in the amygdala. Science, 198:423-5, 1977.

  22. GOLD PE, STERNBERG DB: Retrograde amnesia produced by several treatments: evidence for a common neurobiological mechanism. Science, 201:376-9, 1978.

  23. GOLDMAN-RAKIC PS, SELEMON LD, SCHWARTZ ML: Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12:719-43, 1984.

  24. GRAY TS: Fucntional and anatomical relationships among the amygdala, basal forebrain, ventral striatum, and cortex. Ann N Y Acad Sci, 29:877-44, 1999.

  25. HARRIS KM, TEYLER TJ: Age differences in a circadian influence on hippocampal LTP. Brain Res, 261:60-73, 1983.

  26. HOLLAND PC, GALLAGER M: Amygdala-frontal interactions and reward expectancy. Curr Opinion Neurobiol, 14:148-155, 2004.

  27. KELLEY AE, ANDRZEJEWSKI ME, BALDWIN AE, HERNANDEZ PJ, WAYNE EP: Glutamate-mediated plasticity in corticostriatal networks. Am NY Acad Sci, 1003:159-68, 2003.

  28. KIM JJ, LEE HJ, HAN JS, PACKARD MG: Amygdala is critical for stress-induced modulation of hippocampal longterm potentiation and learning. J Neurosci, 21:5222-8, 2001.

  29. KIM JJ, RISON RA, FANSELOW MS: Effects of amygdala, hippocampus, and periaqueductal gray lesions on short-and long-term contextual fear. Behav Neurosci, 107:1093-8, 1993.

  30. LORENZINI CA, BUCHERELLI C, GIACHETTI, TASSONI G: Conditined freezing (generalized motor inhibition) in several rat strains: its usefulness in assessing somato-vegetative responses to nocioceptive stress. Funct Neurol, 5:267-71, 1990.

  31. MAREN S, QUIRK GJ. Neuronal signaling of fear memory. Nat Rev Neurosci, 5:844-52, 2003.

  32. MAREN S: Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. TINS, 22:561-67, 1999.

  33. MAY CP, HASHER L, FOONG N: Implicit memory, age, and time of day. Psychol Sci, 16:96-100, 2005.

  34. McDONALD RJ, HONG NS: A dissociation of dorsolateral striatum and amygdala function on the same stimulus-response habit task. Neuroscience, 124:507-13, 2004.

  35. McDONALD RJ, WHITE NM: A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behav Neurosci, 107:3-22, 1993.

  36. McGAUGH JL, McINTYRE CK, POWER AE: Amygdala modulation of memory consolidation with other brain systems. Neurobiol Learn Mem, 8:539-552, 2002.

  37. McGAUGH JL: Memory- a century of consolidation. Science, 287:248-251, 2000.

  38. McGAUGH JL: The amygdala modulates the consolidation of memories of emotionally arousing experiences. Anu Rev Neurosci, 27:1-28, 2004.

  39. McINTYRE CK, POWER AE, ROOZENDAAL B, McGAUGH JL: Role of the basolateral amygdala in memory consolidation. Ann N Y Acad Sci, 985:273-93, 2003.

  40. MITSUSHIMA D, YAMANOI C, KIMURA F: Restriction of enviormental space attenuates locomotor activity and hippocampal acetylcholine release in male rats. Brain Res, 805:207-12, 1998.

  41. MIZUNO T, ARITA J, KIMURA F: Spontaneous acetylcholine release in the hippocampus exhibits a diurnal variation in both young and old rats. Neurosci Lett, 12:271-4, 1994.

  42. PACKARD MG, CAHILL L, McGAUGH JL: Amygdala modulation of hippocampal-dependent and caudate nucleusdependent memory processes. Proc Natl Acad Sci USA, 91:8477-81, 1994.

  43. PACKARD MG, TEATHER LA: Amygdala modulation of multiple memory systems: Hippocampus and caudate-putamen. Neurobiol Learn Mem, 69:163-203, 1998.

  44. PARE D: Role of the basolateral amygdala in memory consolidation. Progress Neurobiol, 70:409-20, 2003.

  45. PARENT MB, McGAUGH JL: Posttraining infusion of lidocaine into the amygdala basolateral complex impairs retention of inhibitory avoidance training. Brain Res, 661:97-103, 1994.

  46. PASSINGHAM D, SAKAI K: The prefrontal cortex and working memory: physiology and brain imaging. Curr Opinion Neurobiol, 14:163-8, 2004.

  47. POCHON JB, LEVY R, POLINE JB, CROZIER S y cols.: The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cerebral Cortex, 11:260-266, 2001.

  48. PRATT WE, MIZUMORI SJ: Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward. Behav Neurosci, 112:554-70, 1998.

  49. QUINTANA J, FUSTER JM: From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cerebral Cortex, 9:213-21, 1999.

  50. RAGHAVAN AV, HOROWITZ JM, FULLER CA: Diurnal modulation of long-term potentiation in the hamster hippocampal slice. Brain Res, 833:311-4, 1999.

  51. RALPH MR, KO CH, ANTONIADIS AE, SECO P y cols.: The significance of circadian phase for performance on a reward-based learning task in hamsters. Behav Brain Res, 136:179-84, 2002.

  52. ROSENE DL, VAN HOESEN GW: Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science, 1977:317-7, 1997.

  53. RUDY JW, HUFF NC, MATUS-AMAT P: Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev, 28:675-685, 2004.

  54. RUEDA P, QUIROZ-TORRES AM, MARTINEZ-VARGAS M, PROSPERO-GARCIA O: Enndocanabinoid effects on memory depend on diurnal variations. 32 Annual meeting of the Society for Neuroscience, Orlando, 2002.

  55. SAH P, FABER ESL, LOPEZ DE ARMENTIA M, POWER J: The amygdaloid complex: anatomy and physiology. Physiol Rev, 83:803-34, 2003.

  56. SHATZ C: The developing brain. Scientific American, 267:60-7, 1992.

  57. SHOENBAUM G, CHIBA AA, GALLAGER M: Neural encoding in oprbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neuroscience, 19:1876-84, 1999.

  58. SHULTZ W: Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Curr Opinion Neurobiol, 14:139-47, 2004.

  59. SIROTA A, CSICSVARI J, BUHL D, BUZSAKI G: Comunication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA, 100:2065-2069, 2003.

  60. THIERRY AM, GIOANNI Y, DEGENETAIS E, GLOWINSKI J: Hippocampo-Prefrontal cortex pathway: Anatomical and electrophysiological characteristics. Hippocampus, 10:411-419, 2000.

  61. VAZDARJANOVA A, MCGAUGH JL: Basolateral amygdala is involved in modulating consolidation of memory for classical fear conditioning. J Neurosci, 19:6615-22, 1999.

  62. YANOVSKY JA, ADLER NT, GALLISTEL CR: Does the perception of reward magnitude of self-administered electrical brain stimulation have a circadian rhythm? Behav Neuroscience, 6:888-93, 1986.

  63. YERKES RM, DODSON JD: Te relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psych, 18:459-482, 1908.




2020     |     www.medigraphic.com

Mi perfil

CÓMO CITAR (Vancouver)

Salud Mental. 2006;29