Entrar/Registro  
INICIO ENGLISH
 
Bioquimia
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Bioquimia >Año 2008, No. 2


Morales-Espinosa R, González-Valencia G, Delgado G, Méndez JL, Torres J, Cravioto A
Caracterización y frecuencia del gen vapD en Helicobacter pylori con diferentes genotipos de vacA y cag-PAI
Bioquimia 2008; 33 (2)

Idioma: Inglés
Referencias bibliográficas: 38
Paginas: 43-50
Archivo PDF: 173.33 Kb.


Texto completo




RESUMEN

Diversos estudios, realizados con diferentes técnicas de tipificación molecular han demostrado que el contenido genético y arreglo cromosómico entre cepas de Helicobacter pylori son altamente variables. Además, se ha observado esta variabilidad en diferentes genes, como vacA que presenta una estructura de mosaico y cag-PAI, que presenta una organización diferente en el cromosoma. Un estudio preliminar sugiere que el gen vapD, es un gen variable de cepa, presente en aproximadamente 60% de las cepas de H. pylori. El gen vapD está relacionado con el gen de la proteína D asociada a virulencia de Dichelobacter nodosus. El objetivo de este estudio fue caracterizar y determinar la frecuencia del gen vapD en 301 cepas de H. pylori con diferentes genotipos de vacA y cag-PAI, provenientes de 27 pacientes con diferentes patologías gástricas. Los resultados mostraron que el 70% de los pacientes presentan infección múltiple con cepas de H. pylori de diferentes genotipos de vacA y cag-PAI. El 52% de ellos estuvieron colonizados con cepas vapD positivas y vapD negativas. La caracterización de vapD en cepas individuales, mostró una frecuencia del 38%. Este es el primer estudio que muestra la frecuencia de vapD en cepas de H. pylori aisladas de pacientes mexicanos. Con respecto a los genes vacA y cag-PAI, el genotipo más frecuente entre las cepas fue s1-m1/cag-PAI+, aisladas de pacientes con dolor abdominal crónico, úlcera gástrica y úlcera duodenal. El gen vapD no tiene asociación significativa con un alelo específico de vacA o el genotipo de cag-PAI y la patología gástrica.


Palabras clave: Helicobacter pylori, infección múltiple, genotipos de vacA, vapD, cag-PAI.


REFERENCIAS

  1. McNamara D, El-Omar E. Helicobacter pylori infection and the pathogenesis of gastric cancer: a paradigm for host-bacterial interactions. Dig Liver Dis. 2008; 40: 504-509.

  2. Xia B, Xia HH, Ma CW, Wong KW, Fung Fm, Hui CK, et al. Trends in the prevalence of peptic ulcer disease and Helicobacter pylori infection in family physician-referred uninvestigated dyspeptic patients in Hong Kong. Aliment Pharmacol Ther. 2005; 22: 243-9.

  3. Dailidiene D, Tan S, Ogura K, Zhang M, Lee A, Severinov K, et al. Urease sensitization caused by separation of Helicobacter pylori RNA polymerase beta and beta’ subunits. Helicobacter. 2007; 12: 103-111.

  4. Tanahashi T, Kita M, Kodama T, Yamaoka Y, Sawai N. Cytokine expression and production by purified Helicobacter pylori urease in human gastric epithelial cells. Infect Immun. 2000; 68: 664-71.

  5. Nilius M, Malfertheiner P. Helicobacter pylori enzymes. Alim Pharm Ther. 1996; (Suppl 10): 65-71.

  6. Chomvarin C, Namwat W, Chaicumpar K, Mairiang P, Sangchan A, Sripa B, et al. Prevalence of Helicobacter pylori vacA, cagA, iceA and babA2 genotypes in Thai dyspeptic patients. Int J Infect Dis. 2008; 12: 30-36.

  7. Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 2008; doi:1111/j.1462-5822.2008.01156.x

  8. Cellini L, Grande R, Di Campli E, Di Bartolomeo S, Capodicasa S, Marzio L. Analysis of genetic variability, antimicrobial susceptibility and virulence markers Helicobacter pylori identified in Central Italy. Scand J Gastroenterol. 2006; 41: 280-287.

  9. Minohara Y, Boyd DK, Hawkins HK, Ernst PB, Patel J, Crowe SE. The effect of the cag pathogenicity island on binding of Helicobacter pylori to gastric epithelial cells and the subsequent induction of apoptosis. Helicobacter. 2007; 12: 583-590.

  10. Argent RH, Thomas RJ, Letley Dp, Rittig MG, Hardie KR, Atherton JC. Functional association between the Helicobacter pylori virulence factors VacA and CagA. J Med Microbiol. 2008; 57: 145-150.

  11. Kandulski A, Selgrad M, Malfertheiner P. Helicobacter pylori infection: a clinical overview. Dig Liver Dis. 2008; 40: 619-626.

  12. Blaser MJ, Berg DE. Helicobacter pylori genetic diversity and risk of human disease. J Clin Invest. 2001; 107: 767-773.

  13. Hussein NR, Mohammadi M, Talebkhan Y, Doraghi M, Letley DP, Muhammaf MK, et al. Difference in virulence markers between Helicobacter pylori strains from Iraq and those from Iran: potential importance of regional differences in H. pylori-associated disease. J Clin Microbiol. 2008; 46: 1774-1779.

  14. Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 1992; 20: 5137-42.

  15. Go MF, Kapur V, Graham DY, Musser JM. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis extensive allelic diversity and recombinational population structure. J Bacteriol. 1996; 178: 3934-8.

  16. Björkholm B, Salama NR. Genomics of Helicobacter pylori 2003. Helicobacter. 2003; 8 suppl1: 1-7.

  17. Yamaoka Y. Roles of plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis. J Med Microbiol. 2008: 57: 545-553.

  18. Atherton JC, Cao P, Peek RM Jr, Tummuru MK, Blaser MJ, Cover TL. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. J Biol Chem. 1995; 270: 17771-7.

  19. Cao P, Cover TL. High-level genetic diversity in the vapD chromosomal region of Helicobacter pylori. J Bacteriol. 1997; 179: 2852-6.

  20. Katz ME, Strugnell RA, Rood JI. Molecular characterization of a genomic region associated with virulence in Dichelobacter nodosus. Infect Immun. 1992; 60: 4586-92.

  21. Billington SJ, Sinistaj M, Cheetham BF, Ayres A, Moses EK, Katz ME, et al. Identification of a native Dichelobacter nodosus plasmid and implications for the evolution of the vap regions. Gene. 1996; 172: 111-6.

  22. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness AR, Kerlavage AR, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995; 269: 496-512.

  23. Korch C, Hagblom P, Öhman H, Göransson M, Normark, S. Cryptic plasmid of Neisseria gonorrhoeae: complete nucleotide sequence and genetic organization. J Bacteriol. 1985; 163: 430-8.

  24. Katz ME, Wright CL, Gartside TS, Cheetham BF, Doidge CV, Moses EK, et al. Genetic organization of the duplicated vap region of the Dichelobacter nodosus genome. J Bacteriol. 1994; 176: 2663-9.

  25. Gonzalez-Valencia G, Atherton JC, Muñoz O, Dehesa M, Madrazo-de la Garza A, Torres J. Helicobacter pylori vacA and cagA genotypes in Mexican adults and Children. J Infec Dis. 2000; 182: 1450-4.

  26. Morales-Espinosa R, Castillo-Rojas G, Gonzalez-Valencia G, Ponce de Leon C, Cravioto A, Atherton JC, et al. Colonization of Mexican patients by multiple Helicobacter pylori strains with different vacA and cagA genotypes. J Clin Microbiol. 1999; 37: 3001-4.

  27. Jay Solnick, Jani O’rourke, Peter Vandamme, Adrian Lee. The Genus Helicobacter. The prokaryotes. New York: Springer; 2006: p. 139-77.

  28. Goodwin CS, Armstrong JA, Peters M. Microbiology of Campylobacter pylori. In: Campylobacter pylori in gastritis and peptic ulcer disease. Edited by Blaser MJ Igaku. New York: Shoin Medical Publishers; 1989: 25-49.

  29. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold Spring Harbor; 1989.

  30. Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Yourea BE, Reece CA, et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol. 1998; 28: 37-5.

  31. Dundon WG, Marshall DG, O’Morain CA, Smyth CJ. Population characteristics of Irish Helicobacter pylori isolates: a tRNA-associated locus. Ir J Med Sci. 2000; 169: 137-40.

  32. Yamaoka Y, Kodama T, Gutierrez O, Kita M, Imanishi J, Kashima K, et al. Relationship of vacA genotypes of Helicobacter pylori to cagA status, cytotoxin production, and clinical outcome. Helicobacter. 1998; 4: 241-53.

  33. Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K, Graham DY. Relationship between Helicobacter pylori iceA, cagA and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol. 1999; 37: 2274-9.

  34. Blanke SR, Cover TL. Helicobacter pylori vacuolating cytotoxin. In: Yamaoka Y (ed). Helicobacter pylori: molecular genetics and cellular biology. USA: Horizon Scientific Press; 2008. p. 87-114.

  35. Yamaoka Y, Graham DY. Disease-specific Helicobacter pylori virulence factors: the role of cagA, vacA, iceA, babA2 alone or in combination. In: Helicobacter pylori. Basic mechanisms to clinical cure 2000. Hunt RH, Tytgat GNJ [Eds]. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2000. p. 37-42.

  36. Daines DA, Jarisch J, Smith Al. Identification and characterization of a nontypeable Haemophilus influenzae putative toxin-antitoxin locus. BMC Microbiology. 2004; 4: 30-40.

  37. Jacks S, Giguère S, Prescott JF. In vivo expression of and cell-mediated immune responses to the plasmid-encoded virulence-associated proteins of Rhodococcus equi in foals. Clin Vaccine Immunol. 2007; 14: 369-74.

  38. Benoit S, Benachour A, Taouji S, Auffray Y, Hartke A. Induction of vap genes encoded by the virulence plasmid of Rhodococcus equi during acid tolerance response. Res Microbiol. 2001; 152: 439-49.



>Revistas >Bioquimia >Año2008, No. 2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019