Entrar/Registro  
INICIO ENGLISH
 
Medicina Interna de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Medicina Interna de México >Año 2007, No. 4


Duarte MJ, Díaz MS, Eng CVL, Velásquez DV, Ordóñez LMA
Circulación esplácnica y choque séptico. Un acercamiento fisiopatológico
Med Int Mex 2007; 23 (4)

Idioma: Español
Referencias bibliográficas: 160
Paginas: 330-344
Archivo PDF: 225.83 Kb.


Texto completo




RESUMEN

A pesar de los importantes progresos en el manejo de pacientes con sepsis grave, muchos de ellos padecen insuficiencia orgánica múltiple y mueren por esta causa.
Los traumatismos, las infecciones, las quemaduras, las intervenciones quirúrgicas o el daño al corazón pueden incrementar la tasa metabólica hasta en 20%, lo que origina un consumo mayor de oxígeno. Las lesiones intestinales pueden provocar la liberación de mediadores inflamatorios adicionales. Los daños tisulares en la sepsis son consecuencia de la muerte celular progresiva producida por mediadores directos citotóxicos que favorecen la apoptosis; o bien, son producto de la hipoxia celular que resulta de un desequilibrio entre la demanda y el consumo de oxígeno.
Se sugiere que una perfusión esplácnica inadecuada conduce a la isquemia de la mucosa gastrointestinal, que aumentará la permeabilidad y favorecerá la traslocación bacteriana o de sus endotoxinas. Esta traslocación tiene como consecuencia final la insuficiencia multiorgánica. La perfusión adecuada de la mucosa gastrointestinal mantiene la función de barrera del tracto gastrointestinal. La pérdida de esta barrera permite la traslocación bacteriana desde el lumen intestinal hacia la circulación sistémica, con lo que inicia o prosigue la cadena de daños sistémicos de la sepsis.


Palabras clave: perfusión esplácnica, entrega y consumo anormales de oxígeno, traslocación bacteriana y de endotoxinas, insuficiencia orgánica múltiple.


REFERENCIAS

  1. Beale RJ. Vasopressor and inotropic support in septic shock: an evidence based review. Crit Care Med 2004;32(Suppl.): S455-65.

  2. Gelman S, Mushlin PS. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. Anesthesiology 2004;100:434-9.

  3. Chang PI, Rutlen DL. Effects of beta-adrenergic agonists on splanchnic vascular volume and cardiac output. Am J Physiol 1991;261:H1499-507.

  4. Lautt WW. Intrinsic regulation of hepatic blood flow. Can J Physiol Pharmacol 1996;74:223-33.

  5. Greenway CV, Lautt WW. Blood volume, the venous system, preload, and cardiac output. Can J Physiol Pharmacol 1986;64:383-7.

  6. Rutlen DL, Supple EW, Powell WJ. The role of the liver in the adrenergic regulation of blood flow from the splanchnic to the central circulation. Yale J Biol Med 1979;52:99-106.

  7. Greenway C, Lautt W. Hepatic circulation. In: Bethesda WJ, editor. Handbook of Physiology. The gastrointestinal system, motility and circulation. American Physiology Society, 1989;pp:1519-64.

  8. Greenway CV. Role of splanchnic venous system in overall cardiovascular homeostasis. Fed Proc 1983;42:1678-84.

  9. Donald D. Splanchnic circulation. In: Abboud SJ, Betsheda AF, editors. Handbook of Physiology, section 2. American Physiological Society, 1983;pp:219-40.

  10. Brooksby GA, Donald DE. Dynamic changes in splanchnic blood flow and blood volume in dogs during activation of sympathetic nerves. Circ Res 1971;29:227-38.

  11. Richardson PD, Withrington PG. Responses of the canine hepatic arterial and portal venous vascular beds to dopamine. Eur J Pharmacol 1978;48:337-49.

  12. Kato M, Nimura Y, Miyachi M, Kitagawa Y, et al. Intravenous catecholamines alter hepatic blood flow in conscious dogs with experimental hepatic denervation. J Surg Res 1996;66:179-84.

  13. Scott-Douglas NW, Robinson VJ, Smiseth OA, Wright CI, et al. Effects of acute volume loading and hemorrhage on intestinal vascular capacitance: a mechanism whereby capacitance modulates cardiac output. Can J Cardiol 2002;18:515-22.

  14. Rothe CF. Control of capacitance vessels. In: Shepherd AP, Granger DN, editors. Physiology of the intestinal circulation. New York: Raven, 1984;pp:73.

  15. Levy B, Vallee C, Lauzier F. Comparative effects of vasopressin, norepinephrine, and L-canavanine, a selective inhibitor of inducible nitric oxide synthase, in endotoxic shock. Am J Physiol 2004;287:H209-15.

  16. Roytblat L, Gelman S, Bradley EL, Henderson T, Parks D. Dopamine and hepatic oxygen supply-demand relationship. Can J Physiol Pharmacol 1990;68:1165-9.

  17. Kato M, Nimura Y, Miyachi M, Kitagawa Y, et al. Intravenous catecholamines alter hepatic blood flow in conscious dogs with experimental hepatic denervation. J Surg Res 1996;66:179-84.

  18. Greenway CV. Role of splanchnic venous system in overall cardiovascular homeostasis. Fed Proc 1983;42:1678-84.

  19. Donald D. Splanchnic circulation. In: Shepherd J, Abboud F, editors. Handbook of Physiology, section 2. American Physiological Society, 1983;pp:219-40.

  20. Levy B, Vallee C, Lauzier F.Comparative effects of vasopressin, norepinephrine, and L-canavanine, a selective inhibitor of inducible nitric oxide synthase, in endotoxic shock. Am J Physiol 2004;287:H209-15.

  21. Nakajima Y, Baudry N, Vicaut E. The microcirculation in intestinal villi: a comparison between hemorrhagic shock and endotoxin shock. Am J Respir Crit Care Med 2001;164:1526-30.

  22. Vallet B, Lund N, Curtis SE. Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 1994;76:793-800.

  23. Buwalda M, Ince C. Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med 2002;28:1208-17.

  24. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 1999;27:1369-77.

  25. Whitworth PW, Cryer HM, Garrison RN. Hypoperfusion of the intestinal microcirculation without decreasing cardiac output during live Escherichia coli sepsis in rats. Cir Shock 1989;27:111-8.

  26. Theuer CJ, Wilson MA, Steeb GD. Microvascular vasocons-triction and mucosal hypoperfusion of the rat small intestine during bacteremia. Circ Shock 1993;40:61-68.

  27. Salzman AL. Nitric oxide in the gut. Crit Care Med 1995;3:33-35.

  28. Steeb GD. Pentoxifilina preserves small intestine microvascular blood flow during bacteremia. Surgery 1992;112:756-64.

  29. Westphal M, Freise H, Kehrel BE. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med 2004;32:194-200.

  30. Prins HA, Houdijk APJ, Wiezer MJ. The effect of mild endotoxemia during low arginine plasma levels on organ blood flow in rats. Crit Care Med 2000;28:1991-199.

  31. Sakr Y, Dubois M-J. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 2004;2:1825-31.

  32. Sigalet DL. Enteral nutrition and mucosal immunity: implications for feeding strategies in surgery and trauma. Can J Surg 2004;47(2):223-25.

  33. Nakajima Y, Baudry N, Duranteau J, Vicaut E. Effects of vasopressin, norepinephrine, and L-arginine on intestinal microcirculation in endotoxemia. Crit Care Med 2006;34:1752-7.

  34. Westphal M, Freise H, Kehrel BE. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med 2004;32:194-200.

  35. Prins HA, Houdijk APJ, Wiezer MJ. The effect of mild endotoxemia during low arginine plasma levels on organ blood flow in rats. Crit Care Med 2000;28:1991-7.

  36. Angele MK, Fitzal F, Smail N. L-arginine attenuates trauma-hemorrhage induced liver injury. Crit Care Med 2000;28:3242-8.

  37. Schmidt HH, Baeblich SE, Zernikow BC. L-arginine and arginine analogues: effects on isolated blood vessels and cultured endothelial cells. Br J Pharmacol 1990;101:145-51.

  38. Dunser MW, Mayr AJ, Ulmer H. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation 2003;107:2313-9.

  39. Magnotti LJ, Deitch EA, Burns MD. Bacterial translocation, gut barrier function, and failure. J Burn Care Rehabil 2005;26:383-91.

  40. Lemaire LC. Bacterial traslocation in multiple organ failure cause or epiphenomenon still unproven. Br J Surgery, 1997;84:1340-50.

  41. Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesentericlymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 1979;23:403-11.

  42. Deitch EA, Maejima K, Berg RD. Effect of oral antibiotics and bacterial overgrowth on the translocation of the GI-tract microflora in burned rats. J Trauma 1985;25:385-92.

  43. Deitch EA, Berg RD. Endotoxin but not malnutrition promotes bacterial translocation of the gut flora in burned mice. J Trauma 1987;27:161-6.

  44. Li M, Specian RD, Berg RD, Deitch EA. Effects of protein malnutrition and endotoxin on the intestinal mucosal barrier to the translocation of indigenous flora in mice. J Parenter Enteral Nutr 1989;13:572-8.

  45. Maddaus MA, Wells CL, Platt JL. Effect of T cell modulation on the translocation of bacteria from the gut and mesenteric lymph node. Ann Surg 1988;207:387-98.

  46. Laszlo F, Whittle BJR, Moncada S. Time dependent enhancement or inhibition of endotoxin-induced vascular injury in rat intestine by nitric oxide synthase inhibitors. Br J Pharmacol 1994;111:1309-15.

  47. Deitch EA, Taylor M, Grisham M, Ma L, et al. Endotoxin induces bacterial translocation and increases xanthine oxidase activity. J Trauma 1989;29:1679-83.

  48. Sorrells DL, Friend C, Koltuksuz U. Inhibition of nitric oxide with aminoguanidine reduces bacterial translocation after endotoxin challenge in vivo. Arch Surg 1996;131:1155-63.

  49. Mishima S, Xu DZ, Lu Q. Bacterial translocation is inhibited in inducible nitric oxide synthase knockout mice after endotoxin challenge but not in a model of bacterial overgrowth. Arch Surg 1997;132:1190-5.

  50. Coffey JA, Milhoan RA, Abdula A. Bombesin inhibits bacterial translocation from the gut in burned rats. Surg Forum 1988;39:109-10.

  51. Deitch EA. Nutrition and the gut mucosal barrier. Curr Opin Gen Surg 1993;85-91.

  52. Ordóñez Carlos. Dosis de trauma vs. “segundo golpe”. Cuidados intensivos y trauma. 1ª ed. Ed. Distribuna;pp:45-74.

  53. Martin C, Viviand X, Leone M. Effect of norepinephrine on the outcome of septic shock. Crit Care Med 2000;28:2758-65.

  54. LeDoux D, Astiz ME, Carpati CM. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 2000;28:2729-32.

  55. McDonald WS, Sharp CW, Deitch EA. Immediate enteral feeding in burn patients is safe and effective. Ann Surg 1991;213:177-83.

  56. Saito H, Trocki O, Alexander JW. The effect of route of nutrient administration on the nutritional state, catabolic hormone secretion and gut mucosal integrity after burn injury. JPEN 1987;11:1-7.

  57. LeVoyer T, Cioffi WG, Pratt L. Alterations in intestinal per􀀐- meability after severe thermal injury. Arch Surg 1992;127:26-9.

  58. Deitch EA. Simple intestinal obstruction causes bacterial translocation in man. Arch Surg 1989;124:699-701.

  59. Ambrose NS, Johnson M, Burdon DW. Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn’s disease surgery. Br J Surg 1984;71:624-5.

  60. Ljundgal M, Lundholm M, Katouli M, Rasmussen I, et al. Bacterial translocation in experimental shock is dependent on the strains in the intestinal flora. Scand J Gastroenterol 2000;35:389-97.

  61. Bone RC. Toward an epidemiology and natural history of SIRS. JAMA 1992;268:3452-5.

  62. Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 2004;32:1120-24.

  63. Ince C. Microcirculation in distress: a new resuscitation end point? Crit Care Med 2004;32(9)201-12.

  64. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM. �������Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 1994;76:793-800.

  65. MacFie J, O’Boyle C, Mitchell CJ, Buckley PM, et al. Gut origin sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora and septic morbidity. Gut 1999;45:223-8.

  66. Desai MH, Herndon DN, Rutan RL, Abston S, Linares HA. Ischemic intestinal complications in patients with burns. Surg Gynecol Obstet 1991;172:257-61.

  67. Moore FA, Moore EE, Poggetti R. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma 1991;31:629-38.

  68. Deitch EA. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 1990;125:403-4.

  69. Deitch EA, Forsythe R, Anjaria D. The role of lymphfactors in lung injury, bone marrow suppression, and endothelial cell dysfunction in a primate model of trauma-hemorrhagic shock. Shock 2004;22:221-8.

  70. Magnotti LJ, Upperman JS, Xu DZ. Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock. Ann Surg 1998;228:518-27.

  71. Magnotti LJ, Xu DZ, Lu Q. Gut-derived mesenteric lymph: a link between burn and lung injury. Arch Surg 1999;143:1333-41.

  72. Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 1994;76:2443-51.

  73. Anjaria DJ, Rameshwar P, Deitch EA. Hematopoietic failure after hemorrhagic shock is mediated partially through mesenteric lymph. Crit Care Med 2001;29:1780-5.

  74. Sambol JT, White J, Horton JW, Deitch EA. Burn-induced impairment of cardiac contractile function is due to gutderived factors transported in mesenteric lymph. Shock 2002;18:272-6.

  75. Deitch EA, Shi HP, Lu Q, Feketeova E, et al. Mesenteric lymph from burned rats induces endothelial cell injury and activates neutrophils. Crit Care Med 2004;32:533-8.

  76. Adams JM, Hauser CJ, Adams CA, Xu Dz, et al. Entry of gut lymph into the circulation primes rat neutrophil respiratory burst in hemorrhagic shock. Crit Care Med 2001;29:2194-8.

  77. Zaets SB, Berezina TL, Caruso J, Xu da Z, et al. Mesenteric lymph duct ligation prevents shock-induced RBC deformability and shape changes. J Surg Res 2003;109:51-6.

  78. Xu DZ, Lu Q, Adams CA, Issekutz AC, Deitch EA. Traumahemorrhagic shock-induced up-regulation of endothelial cell adhesion molecules is blunted by mesenteric lymph duct ligation. Crit Care Med 2004;32:760-5.

  79. Tamion F. Gastric mucosal acidosis and cytokine release in patients withseptic shock. Crit Care Med 2003;31:2137-43.

  80. Doglio GR, Pusajo JF, Egurrola MA, Bonfigli GC, et al. Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 1991;19:1037-40.

  81. Chang MC, Cheatham ML, Nelson LD, Rutherford EJ, Morris JA. Gastric tonometry supplements information provided by systemic indicators of oxygen transport. J Trauma. 1994;37:488-94.

  82. Hynninen M, Valtonen M, Markkanen H. Intramucosal pH and endotoxin and cytokine release in severe acute pancreatitis. Shock 2000;13:79-82.

  83. Beale R, Bihari D. Multiple organ failure: the pilgrim’s progress. Crit Care Med 1993;21:S1-S3.

  84. Gutierrez G, Palizas F, Doglio G. Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 1992;339:195-99.

  85. Hamilton-Davies C, Mythen MG, Salmon JB. Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 1997;23:276-81.

  86. Parks DA, Bulkley GB, Granger DN. Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 1982;82:9-15.

  87. Haglund U, Gerdin B. Oxygen-free radicals (OFR) and circulatory shock. Circ Shock 1991;34:405-411.

  88. Tamion F, Richard V, Bonmarchand G. Reduced synthesis of inflammatory cytokines by a free radical scavenger after hemorrhagic shock in rats. Crit Care Med 2000;28:2522-7.

  89. Kirton OC, Windsor J, Wedderburn R, Hudson-Civetta J, et al. Failure of splanchnic resuscitation in acutely injured trauma patient correlates with multiple organ system failure and length of stay in the ICU. Chest 1998;113:1064-9.

  90. Guzman JA, Lacoma FJ, Kruse JA. Relationship between systemic oxygen supply dependency and gastric intramucosal PCO2 during progressive hemorrhage. J Trauma 1998;44:696-700.

  91. Khanna A, Rossman JE, Fung HL, Caty MG. Intestinal and hemodynamic impairment following mesenteric ischemia/reperfusion. J Surg Res 2001;99:114-9.

  92. Grotz MR, Ding J, Guo W, Huang O, Deitch EA. Comparison of plasma cytokine levels in rats subjected to superior mesenteric artery occlusion or hemorrhagic shock. Shock 1995;3:362-8.

  93. Toung T, Reilly PM, Fuh KC, Ferris R, Bulkley GB. Mesenteric vasoconstriction in response to hemorrhagic shock. Shock 2000;13:267-73.

  94. Davis JW. The relationship of base deficit to lactate in porcine hemorrhagic shock and resuscitation. J Trauma 1994;36:168-72.

  95. Dunham CM, Siegel JH, Weireter L. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med 1991;19:231-43.

  96. Montgomery A, Hartmann M, Jonsson K, Haglund U. Intramucosal pH measurement with tonometers for detecting gastrointestinal ischemia in porcine hemorrhagic shock. Circ Shock 1989;29:319-27.

  97. Oud L, Kruse JA. Progressive gastric intramucosal acidosis follows resuscitation from hemorrhagic shock. Shock 1996;6:61-65.

  98. Sato Y, Weil MH, Tang W. Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 1997;82:558-62.

  99. Marik PE. Sublingual capnography, a clinical validation study. Chest 2001;120:923-7.

  100. Baron BJ. Diagnostic utility of sublingual PCO2 for detecting hemorrhage in penetrating trauma patients. J Trauma 2004;57:69-74.

  101. Ivatury RR, Simon RJ, Islam S, Fueg A, et al. A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 1996;183:145-54.+

  102. Johnson BA, Weil MH. Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med 1991;19:1432-8.

  103. Jin X, Weil MH, Sun SJ, Tang W, et al. Decreases in blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 1998;85:2360-4.

  104. Hale SLK, Alker J, Kloner RA. Evaluation of nonradioactive, colored microspheres for measurements of regional blood flow in dogs. Circulation 1988;78:428-34.

  105. Povoas HP, Weil MH, Tang W, Sun S, et al. Decreases in mesenteric blood flow associated with increases in sublingual PCO2 during hemorrhagic shock. Shock 2001;15:398-402.

  106. Fiddian-Green RG, Baker S. Predictive value of the stomach wall pH for complications after cardiac operations: comparison with other monitoring. Crit Care Med 1987;15:153-6.

  107. Almenoff PL, Leavy J, Weil MH, Goldberg NB, et al. Prolongation of the half-life of lactate after maximal exercise in patients with hepatic dysfunction. Crit Care Med 1989;17:870-3.

  108. Friedman G, Berlot G, Kahn RJ, Vincent JL. Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 1995;23:1184-93.

  109. Weil MH, Nakagawa Y, Tang W. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 1999;27:1225-9.

  110. Marik PE, Bankov A. Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 2003;31:818-22.

  111. Dantzker DR. Monitoring tissue oxygenation: the quest continues. Chest 2001;120:701-2.

  112. Pellis T. Increases in both buccal and sublingual partial pressure of carbon dioxide reflect decreases of tissue blood flows in a porcine model during hemorrhagic shock. J Trauma 2005;58:817-24.

  113. Ivatury RR, Simon RJ, Havriliak D, Garcia C, et al. Gastric mucosal pH and oxygen delivery and oxygen consumption indices in the assessment of adequacy of resuscitation after trauma: a prospective, randomized study. J Trauma 1995;39:128-36.

  114. Weil MH. Tissue PCO2 as universal marker of tissue hypoxia. Minerva Anestesiol 2000;66:343-7.

  115. Weil MH, Nakagawa Y, Tang W. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 1999;27:1225-9.

  116. Fiddian-Green RG, Baker S. Predictive value of the stomach wall pH for complications after cardiac operations: comparison with other monitoring. Crit Care Med 1987;15:153-6.

  117. Gattinoni L, Brazzi L, Pelosi P. A trial of goal-oriented hemodynamic therapy in critically ill patients: SvO2 Collaborative Group. N Engl J Med 1995; 333:1025-32.

  118. Zinner MJ, Gurll NJ, Reynolds DG. The effect of hemorrhagic shock and resuscitation on regional blood flow in cynomolgus monkeys. Circ Shock 1977;4:291-6.

  119. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract: the “undrained abscess” of multiple organ failure. Ann Surg 1993;218:111-9.

  120. Dantzker DR. The gastrointestinal tract: the canary of the body? JAMA 1993;270:1247-8.

  121. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multipleorgan- failure syndrome. Arch Surg 1986;121:196-208.

  122. Clavijo-Alvarez JA. Bladder mucosa pH and PCO2 as a minimally invasive monitor of hemorrhagic shock and resuscitation. J Trauma 2004;57:1199-210.

  123. Hameed M. Gastric tonometry: the role of mucosal pH measurement in the management of trauma. Chest 2003;123:475S-481S.

  124. Nygren A. Vasopressors and intestinal mucosal perfusion after cardiac surgery: norepinephrine vs. phenylephrine. Crit Care Med 2006;34:722-9.

  125. Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 1994;272:1354-7.

  126. Broome M. Splanchnic vasoconstriction by angiotensin II is arterial pressure dependent. Acta Anaesthesiol Scand 2002;46:57-63.

  127. Marshall JC. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 2001;29(Suppl.):S99-106.

  128. Reilly PM, MacGowan S, Miyachi M, Schiller HJ, et al. Mesenteric vasoconstriction in cardiogenic shock in pigs. Gastroenterology 1992;102:1968-79.

  129. Dabrowski GP, Steinberg SM, Ferrara JJ, Flint LM. A critical assessment of endpoints of shock resuscitation. Surg Clin North Am 2000;80:825-44.

  130. Velanovich V. Crystalloid versus colloid fluid resuscitation: a meta-analysis of mortality. Surgery 1989;105:65-71.

  131. Cryer HG, Leong K, McArthur DL. Multiple organ failure: by the time you predict it, it’s already there. J Trauma 1999;46:597-606.

  132. Cerra FB. Multiple organ failure syndrome. Dis Mon 1992; 38:843-947.

  133. Dantzker DR. Adequacy of tissue oxygenation. Crit Care Med 1993;21(Suppl):S40-43.

  134. Fiddian-Green RG. Splanchnic ischaemia and multiple organ failure in the critically ill. Ann R Coll Surg Engl 1988;70:128-34.

  135. Chiara O, Pelosi P, Segala M. Mesenteric and renal oxygen transport during hemorrhage and reperfusion: evaluation of optimal goals for resuscitation. J Trauma 2001;51:356-62.

  136. Davis JW, Mackersie RC, Holbrook TL, Hoyt DB. Base deficit as an indicator of significant abdominal injury. Ann Emerg Med 1991;20:842-44.

  137. Kincaid EH, Miller PR, Meredith JW, Rahman N, Chang MC. Elevated arterial base deficit in trauma patients: a marker of impaired oxygen utilization. J Am Coll Surg 1998;187:384-92.

  138. Siegel JH, Rivkind AI, Dalal S, Goodarzi S. Early physiologic predictors of injury severity and death in blunt multiple trauma. Arch Surg 1990;125:498-508.

  139. Ivatury RR, Simon RJ, Islam S, Fueg A, et al. A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg. 1996;183:145-.4.

  140. Spronk PE, Ince C, Gardien MJ. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 2002;360:1395-6.

  141. Shi HP, Deitch EA, Da Xu Z, Lu Q, Hauser CJ. Hypertonic saline improves intestinal mucosa barrier function and lung injury after trauma-hemorrhagic shock. Shock 2002;17:496-501.

  142. Osband AJ, Deitch EA, Hauser CJ. Albumin protects against gut-induced lung injury in vitro and in vivo. Ann Surg 2004;240:331-9.

  143. Deitch EA, Shi HP, Feketeova E, Xu DZ. Serine proteases are involved in the pathogenesis of trauma-hemorrhagic shocki nduced gut and lung injury. Shock 2003;19:452-6.

  144. Levy B, Bollaert PE, Charpentier C. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: A prospective, randomized study. Intensive Care Med 1997;23:282-7.

  145. Vincent JL. Hemodynamic support in septic shock. Intensive Care Med 2001;27(Suppl 1):S80-S92.

  146. Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M. Red blood cell rheology in sepsis. Intensive Care Med 2003;29:1052-61.

  147. Gys T, Hubens A, Neels H, Lauwers LF, Peeters R. The prognostic value of gastric intramural pH in surgical intensive care patients. Crit Care Med 1988;16:1222-4.

  148. Groeneveld AB, van Lambalgen AA, van den Bos GC. Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovas Res 1991;25:80-88.

  149. Tisherman SA. Clinical practice guideline: endpoints of resuscitation. J Trauma 2004;57:898-912.

  150. Martijn P. Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: what is a better predictor of outcome in critically ill septic patients? Crit Care Med 2005;33:2494-500.

  151. Guzman JA, Rosado AE, Kruse JA. Dopamine-1 receptor stimulation attenuates the vasoconstrictive response to gut ischemia. J Appl Physiol 2001;91:596-602.

  152. Giraud GD, MacCannell KL. Decreased nutrient blood flow during dopamine and epinephrine-induced intestinal vasodilatation. J Pharmacol Exp Ther 1984;230:214-20.

  153. Segal JM, Phang PT, Walley KR. Low-dose dopamine hastens onset of gut ischemia in a porcine model of hemorrhagic shock. J Appl Physiol 1992;73:1159-64.

  154. Jakob SM, Ruokonen E, Takala J. Effects of dopamine on systemic and regional blood flow and metabolism in septic and cardiac surgery patients. Shock 2002;18:8-13.

  155. Maynard ND, Bihari DJ, Dalton RN, Smithies MN, Mason RC. Increasing splanchnic blood flow in the critically ill. Chest 1995;108:1648-54.

  156. Murphy MB, Murray C, Shorten GD. Fenoldopam: a selective peripheral dopamine-receptor agonist for the treatment of severe hypertension. N Engl J Med 2001;345:1548-57.

  157. Morelli A, Rocco M. Effects of short-term fenoldopam infusion on gastric mucosal blood flow in septic shock. Anesthesiology 2004;101:576-82.

  158. Rivers E, Nguyen B, Havstad S. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77.

  159. De Backer D, Creteur J, Preiser JC. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002;166:98-104.

  160. Sair M, Etherington PJ, Peter WC. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 2001;29:1343-9.



>Revistas >Medicina Interna de México >Año2007, No. 4
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019