Entrar/Registro  
INICIO ENGLISH
 
Revista de Investigación Clínica
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista de Investigación Clínica >Año 2006, No. 3


Rangel-López A, Piña-Sánchez P, Salcedo M
Variaciones genéticas del gen supresor de tumores TP53: relevancia y estrategias de análisis
Rev Invest Clin 2006; 58 (3)

Idioma: Español
Referencias bibliográficas: 59
Paginas: 254-264
Archivo PDF: 298.55 Kb.


Texto completo




RESUMEN

El cáncer continúa siendo una importante causa de muerte en la sociedad moderna. Los procesos en el desarrollo del cáncer son muy complejos e involucran alteraciones en genes implicados en la proliferación celular. Entre estas alteraciones o variaciones genéticas se incluyen las mutaciones puntuales, la susceptibilidad genética por polimorfismos de un solo nucleótido o “SNP”, así como la pérdida o alteración en la función de genes supresores de tumores. El gen supresor de tumores TP53 es uno de los genes más importantes y estudiados en la genética del cáncer, ya que se encuentra mutado en más del 50% de todos los tipos de cáncer humano y codifica para una proteína multifuncional cuya deficiencia contribuye a la inestabilidad genómica que conduce a la acumulación de mutaciones y a la aceleración en el desarrollo del tumor. Es importante el estudio de dichas alteraciones genéticas presentes en las células cancerosas que puedan ser detectadas a nivel de un solo nucleótido, por su implicación en la pérdida o alteración en la función del gen TP53, así como por la relevancia clínica que ellas puedan tener al ser asociadas a la respuesta de una terapia particular o al pronóstico. Debido a la extensión de este trabajo solamente revisaremos dos de las variaciones genéticas importantes en este gen: las mutaciones puntuales y los SNP, haciendo énfasis en algunas características moleculares que son relevantes en el diseño de estrategias de análisis para su detección.


Palabras clave: DHPLC, Gen supresor de tumores, Microarreglos de DNA, Mutación puntual, SNP.


REFERENCIAS

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA. Cancer J Clin 2005; 55: 74-108.

  2. Blagosklonny MV. How cancer could be cured by 2015. Cell Cycle 2005; 4: e89-e98.

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70.

  4. Frank SA, Nowak MA. Cell biology: Developmental predisposition to cancer. Nature 2003; 422: 94.

  5. Chung CH, Bernard PS, Perou CHM. Molecular portraits and the family tree of cancer. Nature Gen Suppl 2002; 32: 533-40.

  6. Cetin-Atalay R, Ozturk M. p53 mutations as fingerprints of environmental carcinogens. Pure Appl Chem 2000; 72: 995-9.

  7. Kirk Brian, Feinsod M, Favis R, Kliman R, Barany F. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 2002; 30: 3295-3311.

  8. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53. Tumor suppressor gene: clues to cancer etiology and Molecular pathogenesis. Cancer Res 1994; 54: 4855-78.

  9. Lane DP. Cancer. P53, guardian of the genome. Nature 1992; 358: 15-16.

  10. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307-10.

  11. Linzer DIH, Levine AJ. Characterization of a 54 Kdalton cellular SV40 tumor antigen present in SV40 transformed cells and uninfected embryonal carcinoma cells. Cell 1979; 17: 43-52.

  12. Soussi T, Dehouche K, Beround C. p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology Hum Mutat 2000; 15: 105-13.

  13. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 Database: new online mutation analysis and recommendations to users. Hum Mutat 2002; 19: 607-14.

  14. Levine AJ, Finlay CA, Hinds PW. TP53 is a tumor supresor gene. Cell 2004; (Suppl.116): S67-S69.

  15. Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004; 157: 247-70.

  16. Levine AJ, Perry ME, Chang A, Silver A, Dittmer D, Wu M, Welsh D. The 1993 Walter Hubert lectures: the role of the p53 tumor-suppressor gene in tumorigenesis Br J Cancer 1994; 69: 409-16.

  17. Hollstein M, Hergenhahn, Yang Qin, Bartsch H, Wang Z-Q, Hainaut P. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res 1999; 431: 199-209.

  18. Aguilar F, Hussain SP, Cerutti P. Aflatoxin B1 induces the transversion of G-to-T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc. Nat. Acad. Sci 1993; 90: 8586-90.

  19. Dumaz N, Drougard C, Sarasin A, Daya-Grosjean L. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc Nat Acad Sci 1993; 90: 10529-33.

  20. Gao WM, Mady HH, Yu GY, Siegfried JM, Luketich JD, Melhem MF, Keohavong P. Comparison of p53 mutations between adenocarcinoma and squamous cell carcinoma of the lung: unique spectra involving G to A transitions and G to T transversions in both histologic types. Lung Cancer 2003; 40: 141-50.

  21. Pfeifer GP. P53 mutational spectra and the role of methylated CpG sequences. Mutat Res 2000; 450: 155-66.

  22. Varley JM. Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 2003; 21: 313-20.

  23. May P, May E: Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18: 7621-36.

  24. Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol 2002; 14: 86-91.

  25. Chumakov PM. Function of the p53 gene: choice between life and death. Biochim 2000; 65: 28-40.

  26. Lin JJ, Chen B, Elenbaas B, and Levine AJ. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5E1B 55-kD protein. Genes Dev 1994; 8: 1235-46.

  27. Venot CM, Maratrat C, Dureuil E, Conseiller L, Debussche L. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J 1998; 17: 4668-79.

  28. Pavietich NP, Chambers KA, Pabo CO. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev 1993; 7: 2556-64.

  29. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265: 346-55.

  30. Martin ACR, Facchiano AM, Cuff AL, Hernandez-Boussard T, Olivier M, Hainaut P, Thornton JM. Integrating mutation data and structural Analysis of the TP53 tumor-suppressor protein. Hum Mutat 2002; 19: 149-64.

  31. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 2002; 1: 289-98.

  32. De Vries A, Flores ER, Miranda B, Hsieh HM, van Oostrom CTM, Sage J, Jacks T. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Nat Acad. Sci 2002; 99: 2948-53.

  33. Brooks CI, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003; 15: 164-71.

  34. Hofseth LJ, Hussain SP, Harris CC. P53: 25 years after its discovery. Trends Pharmacol Sci 2004; 25: 177-81.

  35. Lowe SW, Cepero E, Evan G. Intrinsic tumour supresión. Nature 2004; 432: 307-15.

  36. Seemann S, Maurici D, Olivier M, de Fromentel CC, Hainaut P. The tumor suppressor gene TP53: implications for cancer management and therapy. Crit Rev Clin Lab Sci 2004; 41: 551-83.

  37. Moll UM, Slade N. p63 and p73: Roles in development and tumor formation. Mol Cancer Res 2004; 2: 371-86.

  38. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860-921.

  39. Venter, JC, et al. The sequence of the human genome. Science 2001; 291: 1304-51.

  40. International HapMap Consorcium. Integrating ethics and science in the International HapMap Proyect. Nat Rev Genet 2004; 5: 467-75.

  41. Shi M. Enabling large-scale pharmacogenetic studies by highthroughput mutation detection and genotyping technologies. Clinical Chemestry 2001; 47: 164-72.

  42. Wang X, Tomso DJ, Liu X, Bell DA. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes. Toxicol Appl Pharmacol. 2005; 207: 84-90.

  43. Li X, Dumont P, Della-Pietra A, Shefler C, Murphy ME. The codon 47 polymorphism in p53 is functionally significant. J Biol Chem 2005; 280: 24245-51.

  44. Schneider-Stock R, Mawrin C, Motsch C, Boltze C, Peters B, Hartig R, Buhtz P, et al. Retention of the arginine allele in codon 72 of the p53 gene correlates with poor apoptosis in head and neck cancer. Am J Pathol 2004a; 164(4).

  45. Matakidou A, Eisen T, Houlston RS. TP53 polymorphism and lung cancer risk: a systematic review and meta-analysis. Mutagenesis 2003; 18: 377-85.

  46. Schneider-Stock R, Boltze C, Peters B, Szibor R, Landt O, Meyer F, Roessner A. Selective loss of codon 72 proline p53 and frequent mutational inactivation of the retained arginine allele in colorectal cancer. Neoplasia. 2004b; 6: 529-35.

  47. Storey A, Thomas M, Kalita A, H Gardwood C, Gardiol D, Mantovani F, et al. Role of p53 polymorphism in the development of human papillomavirus associated cancer. Nature 1998; 393: 229-34.

  48. Jee SH, Won SY, Yun JE, Lee JE, Park SJ, Ji SS. Polymorphism p53 codon-72 and invasive cervical cancer: a metaanalysis Int J Gynecol Obstet 2004; 85: 301-8.

  49. Beckman G, Birgander R, Sjalander A, Saha N, Holmberg PA, Kivela A, Beckman L. Is p53 polymorphism maintained by natural selection? Hum Hered. 1994; 44: 266-70.

  50. Thomas M, Pim D, Banks L. The rol of the e6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 1999; 18: 7690-7700.

  51. Lilleberg SL. In-depth mutation and SNP discovery using DHPLC gene scanning Curr Opin Drug Discov Devel 2003; 6: 237-52.

  52. Lee CH, Macgregor PF. Using microarrays to predict resistance to chemotherapy in cancer patients. Pharmacogenomics 2004; 5: 611-25.

  53. Wen WH, Bernstein L, Lescallett J, Beazer-Barclay Y, Sullivan- Halley J, Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res 2000; 60: 2716-22.

  54. Takahashi Y, Ishii Y, Nagata T, Ikarashi M, Ishikawa K, Asai S. Clinical application of oligonucleotide probe array for fulllength gene sequencing of TP53 in colon cancer. Oncology 2003; 64: 54-60.

  55. Maldonado-Rodríguez R, Beattie KL. Analysis of nucleic acids by tandem hybridization on oligonucleotide microarrays. Meth Mol Biol 2001; 170: 157-71.

  56. Rangel-López A, Maldonado-Rodríguez R, Salcedo-Vargas M, Espinosa-Lara JM, Méndez-Tenorio A, Beattie KL. Low density microarray for the detection of most frequent TP53 missense point mutations. BMC Biotechnology 2005; 5: 8.

  57. Wikman FP, Lu ML, Thykjaer T, Olesen SH, Andersen LD, Cardon-Cardo C, Ørntoft TF. Evaluation of the performance of a p53 sequencing microarray chip using 140 previously sequenced bladder tumor samples. Clin Chem 2000; 46: 1555-61.

  58. Ahrendt SA, Hu Y, Buta M, McDermott MP, Benoit N, Yang SC, et al. p53 Mutations and survival in Stage I Non-Small-Cell Lung Cancer: Results of a Prospective Study. J Natl Cancer Inst 2003; 95: 961-70.

  59. Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res 2002; 30: e51.



>Revistas >Revista de Investigación Clínica >Año2006, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019