medigraphic.com
ENGLISH

Salud Mental

ISSN 0185-3325 (Impreso)
Órgano Oficial del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2009, Número 4

<< Anterior Siguiente >>

Salud Mental 2009; 32 (4)


Los contaminantes ambientales bifenilos policlorinados (PCB) y sus efectos sobre el Sistema Nervioso y la salud

Miller-Pérez C, Sánchez-Islas E, Mucio-Ramírez S, Mendoza-Sotelo J, León-Olea M
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 541
Paginas:
Archivo PDF: 198.99 Kb.


PALABRAS CLAVE

Contaminantes, neurodesarrollo, neurotoxicidad, PCB, askareles.

RESUMEN

La contaminación ambiental es un grave problema mundial que actualmente preocupa a la comunidad internacional. Las grandes ciudades industrializadas, como la de México, son las más contaminadas. Sin embargo, la contaminación llega hasta zonas alejadas de donde se produce y afecta los ecosistemas. La contaminación es responsable de una alarmante y creciente lista de enfermedades en el hombre, los animales y las plantas. Los bifenilos policlorados (PCB) se catalogaron dentro de los 12 contaminantes orgánicos más tóxicos para los organismos vivos. Sus propiedades físicas hicieron que se usaran ampliamente en la industria. No son biodegradables y se acumulan en el ambiente, se transfieren dentro de la cadena alimenticia y tienden a concentrarse más al final de ésta, por lo que en los alimentos se determinaron concentraciones que sobrepasaban los límites establecidos por el Organismo de Protección del Ambiente de los Estados Unidos. Se demostró que los PCB afectan la función de los sistemas endocrino, inmunológico y nervioso, entre otros. El mecanismo de acción descrito para los PCB, es por medio de la activación del receptor aril hidrocarburo, un factor de transcripción citosólico dependiente de ligando. Los PCB actúan como ligandos y son lipofílicos, por lo que entran a la célula y llegan al núcleo para unirse al ADN, lo cual altera la trascripción de genes específicos y provoca alteraciones genéticas que conducen a cambios en los procesos y funciones celulares. Los PCB interfieren con la producción y regulación de las hormonas esteroides y tiroideas al actuar como antagonistas o agonistas de los receptores hormonales. Afectan la función reproductora y alteran diferentes aspectos de la sexualidad. Como otros grupos de investigación, el nuestro ha observado que la administración de PCB a ratas gestantes causa un incremento de la mortalidad de las crías, pérdida fetal, peso corporal bajo y una reducción en el número de machos por camada. Los PCB actúan como inmunotoxinas que causan la atrofia del timo y afectan la respuesta inmune. Los PCB y sus metabolitos son carcinogénicos debido a la generación de especies reactivas de oxígeno que pueden producir daño oxidativo al ADN, provocar aberraciones cromosómicas y generar cáncer de mama, hígado, tracto biliar, gastrointestinal, cerebral, etc. Los organismos son más vulnerables a la exposición de los PCB durante las etapas tempranas del desarrollo embrionario. Los PCB atraviesan la placenta y llegan al feto, permanecen en la leche materna y mantienen niveles altos en las crías. Los PCB afectan así el desarrollo del Sistema Nervioso, los órganos y los tejidos, y pueden llevar a la pérdida fetal. También se asocian a deficiencias en el neurodesarrollo del niño y a alteraciones neuropsicológicas en la atención, el aprendizaje y el desarrollo psicomotor. La exposición aguda o crónica a los PCB se asocia con cefalea, insomnio, nerviosismo, irritabilidad, depresión y ansiedad. Los PCB participan en el proceso de neurodegeneración al afectar el sistema dopaminérgico. En el nivel neurofisiológico, afectan la transmisión sináptica excitatoria e inhibitoria hipocampal; inhiben la potenciación a largo plazo y la plasticidad sináptica; alteran mecanismos de señalización celular como el GABAérgico, en el aprendizaje y la memoria, y producen alteraciones cognoscitivas. Nuestro grupo demostró que la administración de los PCB durante la gestación inhibe la actividad de la enzima sintasa del óxido nítrico y provoca cambios neuronales morfológicos degenerativos en los núcleos paraventricular y supraóptico hipotalámicos. Las evidencias de los estudios realizados con los PCB son concluyentes en cuanto a que la exposición a estos tóxicos ambientales interfiere con el funcionamiento de diferentes órganos y a que sistemas y a que son un factor de riesgo para un amplio número de alteraciones neurodegenerativas. Actualmente, las poblaciones están expuestas a concentraciones que exceden los niveles límite tolerables recomendados por la Organización Mundial de la Salud. Nuestro grupo está analizando las alteraciones de estos contaminantes en el nivel neuroendocrino y en algunos aspectos del aprendizaje y la memoria. Dada la relevancia de los efectos de los PCB en la salud y de la falta en México de una valoración de los niveles de los PCB existentes en personas y alimentos, es importante que las instituciones de salud fomenten y apoyen las investigaciones en esta área.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Breivik K, Sweetman A, Pacyna JM, Jones KC. «Towards a global historical

  2. emission inventory for selected PCB congeners a mass balance

  3. approach 1. Global production and consumption». Science Total Environment

  4. 2002;290:181-198.

  5. Black KK, Carlisle J, Siegel D, Salinas J. Health concerns and environmental

  6. issue with PVC-containing building materials in green buildings

  7. integrated wast management board. USA: California Environmental Protection

  8. Agency; 2006; p. 11.

  9. Safe S, Safe L, Mullin M. Polychlorinated biphenyls: environmental occurrence

  10. and analysis. En: Polychlorinated biphenyls (PCBs): Mammalian

  11. and environmental toxicology. Safe S, Hutzinger O (eds.). Berlin:

  12. Springer-Verlag; 1987; 1–13.

  13. Evans MS, Noguchi GE, Rice CP. The biomagnification of polychlorinated

  14. biphenyls, toxaphene and DDT compounds in a lake Michigan offshore

  15. food web. Arch Environ Contam Toxicol 1991;20:87–93.

  16. Tilson HA, Kodavanti PR, Mundy WR, Bushnell PJ. Neurotoxicity of

  17. environmental chemicals and their mechanism of action. Toxicol Lett

  18. 1998;102–103:631–635.

  19. Stewart P, Reihman J, Lonky E, Darvill T, Pagano J. Prenatal PCB exposure

  20. and neonatal behavioral assessment scale (NBAS) performance.

  21. Neurotoxicol Teratol 2000;22:21-29.

  22. Muir D, Sverko E. Analytical methods for PCBs and organochlorine pesticides

  23. in environmental monitoring and surveillance: a critical appraisal.

  24. Anal Bioanal Chem 2006;386:769–789.

  25. EPA. Method 8082. Polychlorinated biphenyls (PCBs) by capillary column

  26. gas chromatography. USA: Environmental Protection Agency; 1995.

  27. EPA. Method 1668, Revision A: Chlorinated biphenyl congeners in water,

  28. soil, sediment, and tissue by HRGC/HRMS. USA: Environmental Protection

  29. Agency. Office of Water; 1999.

  30. Hess P, de Boer J, Cofino WP et al. Critical review of the analysis of nonand

  31. mono-orthochlorobiphenyls. J Chromatogr 1995;703:417-465.

  32. Analytical methods en http://www.atsdr.cdc.gov/toxprofiles/ tp17-c7.pdf

  33. Sherry J. Environmental immunoassays and other bioanalytical methods:

  34. overview and update. Chemosphere 1997;34:1011-25.

  35. Behnisch PA, Hosoe K, Sakai S. Combinatorial bio/chemical analysis of

  36. dioxin and dioxin-like compounds in waste recycling, feed/food, humans/

  37. wildlife and the environment. Environ Int 2001;27:495-519.

  38. Schmidt JV, Bradfield CA. Ah receptor signaling pathways. Annu Rev

  39. Cell Dev Biol 1996;12:55-89.

  40. Safe S, Bandiera S, Sawyer T, Robertson L, Safe L et al. PCBs: Structurefunction

  41. relationships and mechanism of action. Environmental Health

  42. Perspectives 1985;60:47-56.

  43. McKinney JD, Chae K, McConnelit EE, Birnbaumt LS. Structure-induction

  44. versus structure-toxicity relationships for polychiorinated biphenyls

  45. and related aromatic hydrocarbons. Environmental Health Perspectives

  46. 1985;60:57-68.

  47. Rowlands JC, Gustafsson JA. Aryl hydrocarbon receptor-mediated signal

  48. transduction. Crit Rev Toxicol 1997;27:109-34.

  49. Gauger KJ, Giera S, Sharlin DS, Bansal R, Iannacone E et al. Polychlorinated

  50. biphenyls 105 and 118 form thyroid hormone receptor agonists

  51. after cytochrome P4501A1 activation in rat pituitary GH3 cells. Environ

  52. Health Perspect 2007;115:1623-30.

  53. Martinez JM, Afshari CA, Bushel PR, Masuda A, Takahashi T et al. «Differential

  54. toxicogenomic responses to 2,3,7,8-tetrachlorodibenzo-pdioxin

  55. in malignant and nonmalignant human airway epithelial cells».

  56. Toxicol Sci 2002;69:409–23.

  57. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by

  58. structurally diverse exogenous and endogenous chemicals. Annu Rev

  59. Pharmacol Toxicol 2003;43:309-34.

  60. McKinney JD, Waller CL. Polychlorinated biphenyls as hormonally active

  61. structural analogues. Environ Health Perspect 1994;102:290-7.

  62. Hagmar L. Polychlorinated biphenyls and thyroid status in humans: a

  63. review. Thyroid 2003;13:1021-8.

  64. La Rocca C, Mantovani A. From environment to food: the case of PCB.

  65. Ann Ist Super Sanita 2006;42:410-6.

  66. Langer P. Persistent organochlorinated pollutants (PCB, DDE, HCB, dioxins,

  67. furans) and the thyroid-review 2008. Endocr Regul 2008;42:79-104.

  68. Golden RJ, Noller KL, Titus-Emstoff L, Kaufman RH, Mittendorf R et al.

  69. Environmental endocrine modulators and human health: an assessment

  70. of the biological evidence. Crit Rev Toxicol 1998;28:109-227.

  71. Van den Berg KJ, Zurcher C, Brouwer A. Effects of 3,4,3',4'-tetrachlorobiphenyl

  72. on thyroid function and histology in marmoset monkeys. Toxicol

  73. Lett 1988;41:77-86.

  74. Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ et al. Interactions

  75. of persistent environmental organohalogens with the thyroid hormone

  76. system: mechanisms and possible consequences for animal and

  77. human health. Toxicol Ind Health 1998;14:59-84.

  78. Bastomsky CH. Effects of a polychlorinated biphenyl mixture (aroclor

  79. 1254) and DDT on biliary thyroxine excretion in rats. Endocrinology

  80. 1974;95:1150-5.

  81. Ness DK, Schantz SL, Moshtaghian J, Hansen LG. Effects of perinatal

  82. exposure to specific PCB congeners on thyroid hormone concentrations

  83. and thyroid histology in the rat. Toxicol Lett 1993;68:311-23.

  84. Seo BW, Li MH, Hansen LG, Moore RW, Peterson RE et al. Effects of

  85. gestational and lactational exposure to coplanar polychlorinated biphenyl

  86. (PCB) congeners or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on

  87. thyroid hormone concentrations in weanling rats. Toxicol Lett

  88. 1995;78:253-62.

  89. Morse DC, Wehler EK, Wesseling W, Koeman JH, Brouwer A. Alterations

  90. in rat brain thyroid hormone status following pre- and postnatal

  91. exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl

  92. Pharmacol 1996;136:269-79.

  93. Hallgren S, Sinjari T, Håkansson H, Darnerud PO. Effects of polybrominated

  94. diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs)

  95. on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol

  96. 2001;75:200-8.

  97. Wade MG, Parent S, Finnson KW, Foster W, Younglai E et al. Thyroid

  98. toxicity due to subchronic exposure to a complex mixture of 16 organochlorines,

  99. lead, and cadmium. Toxicol Sci 2002;67:207-18.

  100. Meerts IA, Hoving S, Van den Berg JH, Weijers BM, Swarts HJ et al.

  101. Effects of in utero exposure to 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl

  102. (4-OH-CB107) on developmental landmarks, steroid hormone levels,

  103. and female estrous cyclicity in rats. Toxicol Sci 2004;82:259-67.

  104. Roegge CS, Morris JR, Villareal S, Wang VC, Powers BE et al. Purkinje

  105. cell and cerebellar effects following developmental exposure to PCBs

  106. and/or MeHg. Neurotoxicol Teratol 2006;28:74-85.

  107. McLanahan ED, Campbell JL Jr, Ferguson DC, Harmon B, Hedge JM et

  108. al. Low-dose effects of ammonium perchlorate on the hypothalamicpituitary-

  109. thyroid axis of adult male rats pretreated with PCB126. Toxicol

  110. Sci 2007;97:308-17.

  111. Fisher JW, Campbell J, Muralidhara S, Bruckner JV, Ferguson D et al.

  112. Effect of PCB 126 on hepatic metabolism of thyroxine and perturbations

  113. in the hypothalamicpituitary-thyroid axis in the rat. Toxicol Sci

  114. 2006;90:87–95.

  115. Hood A, Hashmi R, Klaassen CD. Effects of microsomal enzyme inducers

  116. on thyroid-follicular cell proliferation, hyperplasia, and hypertrophy.

  117. Toxicol Appl Pharmacol 1999;160:163–170.

  118. Eriksson P, Fischer C, Fredriksson A. Polybrominated diphenyl ethers,

  119. a group of brominated flame retardants, can interact with polychlorinated

  120. biphenyls in enhancing developmental neurobehavioral defects.

  121. Toxicological Sciences 2006;94:302–309.

  122. Lamb MR, Taylor S, Liu X, Wolff MS, Borrell L et al. Prenatal exposure

  123. to polychlorinated biphenyls and postnatal growth: a structural analysis.

  124. Environ Health Perspect 2006;114:779-85.

  125. León-Olea M, Talavera-Cuevas E, Sánchez-Islas E, Mucio-Ramírez S,

  126. Miller-Pérez C et al. Effects of polychlorinated biphenyls on nitrergic

  127. neurons and nitric oxide synthase activity in rat pups brain. Program

  128. No. 759.10. San Diego, CA: Society for Neuroscience Abstract; 2004.

  129. Coburn CG, Currás-Collazo MC, Kodavanti PR. Polybrominated diphenyl

  130. ethers and ortho-substituted polychlorinated biphenyls as neuroendocrine

  131. disruptors of vasopressin release: effects during physiological

  132. activation in vitro and structure-activity relationships. Toxicol Sci

  133. 2007;98:178-86.

  134. Coburn CG, Gillard ER, Currás-Collazo MC. Dietary exposure to aroclor

  135. 1254 alters central and peripheral vasopressin release in response

  136. to dehydration in the rat. Toxicol Sci 2005;84:149-56.

  137. Carpenter OD. Polychlorinated biphenyls (PCBs): Routes of exposure and

  138. effects on human health. Reviews Enviromental Health 2006;21:1-23.

  139. Codru N, Schymura MJ, Negoita S. Akwesasne task Force on Environment,

  140. Rej R, Carpenter DODiabetes in relation to serum levels of polychlorinated

  141. biphenyls and chlorinated pesticides in adult Native Americans.

  142. Environ Health Perspect 2007;115:1442-7.

  143. Kovaceviæ R, Vojinoviæ-Miloradov M, Teodoroviæ I, Andriæ S. Effect

  144. of PCBs on androgen production by suspension of adult rat Leydig cells

  145. in vitro. J Steroid Biochem Mol Biol 1995;52:595-7.

  146. Andric SA, Kostic TS, Dragisic SM, Andric NL, Stojilkovic SS et al. Acute

  147. effects of polychlorinated biphenyl-containing and -free transformer

  148. fluids on rat testicular steroidogenesis. Environ Health Perspect

  149. 2000;108:955-9.

  150. Portigal CL, Cowell SP, Fedoruk MN, Butler CM, Rennie PS et al. Polychlorinated

  151. biphenyls interfere with androgen-induced transcriptional

  152. activation and hormone binding. Toxicol Appl Pharmacol

  153. 2002;179:185-94.

  154. Bush B, Bennett AH, Snow JT. Polychlorobiphenyl congeners, p,p’-DDE,

  155. and sperm function in humans. Arch Environ Contam Toxicol

  156. 1986;15:333-41.

  157. Hauser R, Altshul L, Chen Z, Ryan L, Overstreet J et al. Environmental

  158. organo chlorines and semen quality: results of a pilot study. Environ

  159. Health Perspect 2002;110:229-33.

  160. Hsu PC, Huang W, Yao WJ, Wu MH, Guo YL et al. Sperm changes in

  161. men exposed to polychlorinated biphenyls and dibenzofurans. JAMA

  162. 2003;289:2943-4.

  163. Guo YL, Hsu CC, Lambert GH. Effects of environmental chemicals (EC)

  164. on sexual maturation. Pediatr Res 1996;39:74A.

  165. Hardell L, Bavel B, Lindström G, Eriksson M, Carlberg M. In utero exposure

  166. to persistent organic pollutants in relation to testicular cancer

  167. risk. Int J Androl 2006;29:228-34.

  168. Cooper GS, Klebanoff MA, Promislow J, Brock JW, Longnecker MP.

  169. Polychlorinated biphenyls and menstrual cycle characteristics. Epidemiology

  170. 2005;16:191-200.

  171. Toft G, Axmon A, Lindh CH, Giwercman A, Bonde JP. Menstrual cycle

  172. characteristics in European and Inuit women exposed to persistent organochlorine

  173. pollutants. Hum Reprod 2008;23:193-200.

  174. Pauwels A, Schepens PJ, D’Hooghe T, Delbeke L, Dhont M et al. The risk

  175. of endometriosis and exposure to dioxins and polychlorinated biphenyls:

  176. a case-control study of infertile women. Hum Reprod 2001;16:2050-5.

  177. Rier SE, Turner WE, Martin DC, Morris R, Lucier GW et al. Serum levels

  178. of TCDD and dioxin-like chemicals in Rhesus monkeys chronically exposed

  179. to dioxin: correlation of increased serum PCB levels with endometriosis.

  180. Toxicol Sci 2001;59:147-59.

  181. Mocarelli P, Gerthoux PM, Ferrari E, Patterson DG Jr, Kieszak SM et al.

  182. Paternal concentrations of dioxin and sex ratio of offspring. Lancet

  183. 2000;355:1858-63.

  184. Weisskopf MG, Anderson HA, Hanrahan LP. Great Lakes Consortium.

  185. Decreased sex ratio following maternal exposure to polychlorinated biphenyls

  186. from contaminated Great Lakes sport-caught fish: a retrospective

  187. cohort study. Environ Health 2003;2:2.

  188. Simmons SL, Cummings JA, Clemens LG, Nunez AA. Exposure to PCB

  189. 77 affects the maternal behavior of rats. Physiol Behav 2005;84:81-6.

  190. Cummings JA, Nunez AA, Clemens LG. A cross-fostering analysis of

  191. the effects of PCB 77 on the maternal behavior of rats. Physiol Behav

  192. 2005;85:83-91.

  193. Cromwell HC, Johnson A, McKnight L, Horinek M, Asbrock C et al.

  194. Effects of polychlorinated biphenyls on maternal odor conditioning in

  195. rat pups. Physiol Behav 2007;91:658-66.

  196. Vos JG, van Driel-Grootenhuis L. PCB-induced suppression of the humoral

  197. and cell-mediated immunity in guinea pigs. Sci Total Environ

  198. 1972;1:289–302.

  199. Allen JR, Barsotti DA. The effects of transplacental and mammary movement

  200. of PCBs on infant rhesus monkeys. Toxicology 1976;6:331–40.

  201. Smialowicz RJ, Andrews JE, Riddle MM, Rogers RR, Luebke RW et al.

  202. Evaluation of the immunotoxicity of low level PCB exposure in the rat.

  203. Toxicology 1989;56:197–211.

  204. Knobil E. Hormonally active agents in the environment Washington,

  205. D.C.: National Academy Press; 1999; p. 430.

  206. Lyche J, Larsen H, Skaare JU, Tverdal A, Dahl E et al. Effects of perinatal

  207. exposure to low doses of PCB 153 and PCB 126 on lymphocyte pro-liferation and hematology in goat kids. J Toxicol Environ Health

  208. 2004;67:889-904.

  209. Lu YC, Wu YC. Clinical findings and immunological abnormalities in

  210. Yu-Cheng patients. Environ Health Perspect 1985;59:17–29.

  211. Weisglas-Kuperus N, Sas TC, Koopman-Esseboom C, van der Zwan CW,

  212. De Ridder MA et al. Immunologic effects of background prenatal and

  213. postnatal exposure to dioxins and polychlorinated biphenyls in Dutch

  214. infants. Pediatr Res 1995;38:404–410.

  215. Weisglas-Kuperus N, Patandin S, Berbers GA, Sas TC, Mulder PG et al.

  216. Immunologic effects of background exposure to polychlorinated biphenyls

  217. and dioxins in Dutch preschool children. Environ Health Perspect

  218. 2000;108:1203–1207.

  219. Agrawal AK, Tilson HA, Bondy SC. 3,4,3',4'-Tetrachlorobiphenyl given

  220. to mice prenatally produces long-term decreases in striatal dopamine and

  221. receptor binding sites in the caudate nucleus. Toxicol Lett 1981;7:417-24.

  222. Safe S. Toxicology, structure-function relationship, and human and environmental

  223. health impacts of polychlorinated biphenyls: progress and

  224. problems. Environ Health Perspect 1993;100:259-68.

  225. Seegal RF, Brosch KO, Okoniewski RJ. Effects of in utero and lactational

  226. exposure of the laboratory rat to 2,4,2',4'- and 3,4,3',4'-tetrachlorobiphenyl

  227. on dopamine function. Toxicol Appl Pharmacol 1997;146:95-103.

  228. Jacobson JL, Fein GG, Jacobson SW, Schwartz PM, Dowler JK. The transfer

  229. of polychlorinated biphenyls (PCBs) and polybrominated

  230. biphenyls(PBBs) across the human placenta and into maternal milk. Am

  231. J Public Health 1984;74:378-9.

  232. Goldey ES, Kehn LS, Lau C, Rehnberg GL, Crofton KM. Developmental

  233. exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating

  234. thyroid hormone concentrations and causes hearing deficits in rats.

  235. Toxicol Appl Pharmacol 1995;135:77-88.

  236. Brouwer A, Longnecker MP, Birnbaum LS, Cogliano J, Kostyniak P et al.

  237. Characterization of potential endocrine-related health effects at low-dose

  238. levels of exposure to PCBs. Environ Health Perspect 1999;107:639-49.

  239. Darnerud PO, Morse D, Klasson-Wehler E, Brouwer A. Binding of a 3,3',4,4'-

  240. tetrachlorobiphenyl (CB-77) metabolite to fetal transthyretin and effects

  241. on fetal thyroid hormone levels in mice. Toxicology 1996;106:105-14.

  242. Rhind SM. Endocrine disrupting compounds and farm animals: their

  243. properties, actions and routes of exposure. Domest Anim Endocrinol

  244. 2002;23:179-87.

  245. Murai K, Okamura K, Tsuji H, Kajiwara E, Watanabe H et al. Thyroid

  246. function in «yusho» patients exposed to polychlorinated biphenyls

  247. (PCB). Environ Res 1987;44:179-87.

  248. Herr DW, Goldey ES, Crofton KM. Developmental exposure to Aroclor

  249. 1254 produces low-frequency alterations in adult rat brainstem auditory

  250. evoked responses. Fundam Appl Toxicol 1996;33:120-8.

  251. Uziel A. Periods of sensitivity to thyroid hormone during the development

  252. of the organ of Corti. Acta Otolaryngol 1986;429(sulp.):23-7.

  253. Crofton KM, Ding D, Padich R, Taylor M, Henderson D. Hearing loss

  254. following exposure during development to polychlorinated biphenyls:

  255. la cochlear site of action. Hear Res 2000;144:196-204.

  256. Kenet T, Froemke RC, Schreiner CE, Pessah IN, Merzenich MM. Perinatal

  257. exposure to a noncoplanar polychlorinated biphenyl alters tonotopy,

  258. receptive fields, and plasticity in rat primary auditory cortex. Proc

  259. Natl Acad Sci USA 2007;104:7646-51.

  260. Fritsche E, Cline JE, Nguyen NH, Scanlan TS, Abel J. Polychlorinated

  261. biphenyls disturb differentiation of normal human neural progenitor

  262. cells: clue for involvement of thyroid hormone receptors. Environ Health

  263. Perspect 2005;113:871-6.

  264. Seegal RF. Epidemiological and laboratory evidence of PCB- induced

  265. neurotoxicity. Crit Rev Toxicol 1996;26:709-737.

  266. Tilson HA, Kodavanti PR. Neurochemical effects of polychlorinated biphenyls:

  267. an overview and identification of research needs. Neurotoxicology

  268. 1997;18:727-743.

  269. Gorell JM, Johnson CC, Rybicki BA, Peterson EL et al. The risk of

  270. Parkinson’s disease with exposure to pesticides, farming, well water,

  271. and rural living. Neurology 1998;50:1346-50.

  272. Fischer LJ, Seegal RF, Ganey PE, Pessah IN, Kodavanti PR. Symposium

  273. overview: toxicity of non coplanar PCBs. Toxicol Sci 1998;41:49-61.

  274. Angus WG, Contreras ML. The effects of Aroclor 1254 on undifferentiated

  275. and NGF-stimulated differentiating PC12 cells. Neurotoxicology

  276. 1994;15:809-18.

  277. Corrigan FM, French M, Murray L. Organochlorine compounds in human

  278. brain. Hum Exp Toxicol 1996;15:262-4.

  279. Corrigan FM, Murray L, Wyatt CL, Shore RF. Diorthosubstituted polychlorinated

  280. biphenyls in caudate nucleus in Parkinson’s disease. Exp

  281. Neurol 1998;150:339-42.

  282. Seegal RF, Bush B, Brosch KO. Decreases in dopamine concentrations in

  283. adult, non-human primate brain persist following removal from polychlorinated

  284. biphenyls. Toxicology 1994;86:71-87.

  285. Mariussen E, Fonnum F. The effect of polychlorinated biphenyls on the

  286. high affinity uptake of the neurotransmitters, dopamine, serotonin, glutamate

  287. and GABA, into rat brain synap-tosomes. Toxicology

  288. 2001;159:11-21.

  289. Mariussen E, Andersson PL, Tysklind M, Fonnum F. Effect of polychlorinated

  290. biphenyls on the uptake of dopamine into rat brain synaptic vesicles:

  291. a structure-activity study. Toxicol Appl Pharmacol 2001;175:176-183.

  292. Bemis JC, Seegal RE. PCB-induced inhibition of the vesicu-lar monoamine

  293. transporter predicts reduction in the synaptosomal dopamine content.

  294. Toxicol Sci 2004;80:295-299.

  295. Richardson JR, Miller GW. Acute exposure to aroclor 1016 or 1260 differentially

  296. affects dopamine transporter and vesicular monoamine transporter

  297. 2 levels. Toxicol Lett 2004;148:29-40.

  298. Malkiewicz K, Mohammed R, Folkesson R, Winblad B, Szutowski M et

  299. al. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin

  300. and parkin in the rat brain. Toxicol Lett 2006;161:152-8.

  301. Burke RE. Cl-Synuclein and parkin: coming together of pieces in puzzle

  302. of Parkinson’s disease. Lancet 2001;358:1567-1568.

  303. Di Rosa G, Puzzo D, Sant’Angelo A, Trinchese E, Arancio, O. Cl-Synuclein:

  304. between synaptic function and dysfunction. Histol Histopathol

  305. 2003;18:1257-1266.

  306. Giasson BI, Lee VM. Parkin and the molecular pathways of Parkinson’s

  307. disease. Neuron 2001;31:885-888.

  308. Dev KK, van der Putten H, Sommer B, Rovelli G. Part 1: Parkin-associated

  309. proteins and Parkinson’s disease. Neuropharmacology 2003;45:1-13.

  310. Tumer PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor

  311. protein and its fragments in regulating neural activity, plasticity

  312. and memory. Prog Neurobiol 2003;70:1-32.

  313. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD et al. a-Synuclein

  314. and Parkinson’s disease. FASEB J 2004;18:617-626.

  315. Canzoniero LM, Adornetto A, Secondo A, Magi S, Dell’aversano C et

  316. al. Involvement of the nitric oxide/protein kinase G pathway in polychlorinated

  317. biphenyl-induced cell death in SH-SY 5Y neuroblastoma cells. J

  318. Neurosci Res 2006;84:692-7.

  319. Yuansheng T, Renji S, David L, David O. Carpenter. Ortho-substituted

  320. but not coplanar PCBs rapidly kill cerebelar granule cells. Toxicological

  321. Sciences 2004;79:147-156.

  322. Lee DW, Opanashuk LA. Polychlorinated biphenyl mixture aroclor 1254-

  323. induced oxidative stress plays a role in dopaminergic cell injury. Neurotoxicology

  324. 2004;25:925-939.

  325. Fitzgerald EF [My paper], Belanger EE, Gomez MI, Cayo M, Mccaffrey

  326. RJet al. Polychlorinated Biphenyl Exposure and Neuropsychological

  327. Status among Older Residents of Upper Hudson River Communities.

  328. Environmental Health Perspectives 2008;116:209-215.

  329. Kao-Chang L, Nai-Wen G, Pei-Chien T, Chiu-Yueh Y, Yue Let al. Neurocognitive

  330. changes among elderly exposed to PCBs/PCDFs in Taiwan.

  331. Environmental Health Perspectives 2008;116:184-189.

  332. Fellows LK, Farah MJ. Ventromedial frontal cortex mediates affective

  333. shifting in humans: evidence from a reversal learning paradigm. Brain

  334. 2003;126:1830-1837.

  335. Seegal RF, Okoniewski RJ, Brosch KO, Bemis JC. Polychlorinated biphenyls

  336. alter extraneuronal but not tissue dopamine concentrations in

  337. adult rat striatum: an in vivo microdialysis study. Environ Health Perspect

  338. 2002;110:1113-7.

  339. Lyng GD, Snyder-Keller A, Seegal RF. Polychlorinated biphenyl-induced

  340. neurotoxicity in organotypic cocultures of developing rat ventral

  341. mesencephalon and striatum. Toxicol Sci 2007;97:128-39.

  342. Daniels JL, Longnecker MP, Klebanoff MA, Gray KA, Brock JW et al.

  343. Prenatal exposure to low-level polychlorinated biphenyls in relation to

  344. mental and motor development at 8 months. Am J Epidemiol

  345. 2003;157:485-92.

  346. Bayley N. Manual for the Bayley scales of infants development. Segunda

  347. edición. New York: Psychological Corporation; 1993.

  348. Nakajima S, Saijo Y, Kato S, Sasaki S, Uno A et al. Effects of prenatal

  349. exposure to polychlorinated biphenyls and dioxins on mental and motor

  350. development in Japanese children at 6 months of age. Environmental

  351. Health Perspectives 2006;114:773-778.

  352. Jacobson JL, Jacobson SW, Humphrey HE. Effects of exposure to PCBs

  353. and related compounds on growth and activity in children. Neurotoxicol

  354. Teratol 1990;12:319-26.

  355. Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ et al. Effects

  356. of environmental exposure to polychlorinated biphenyls and dioxins

  357. on cognitive abilities in Dutch children at 42 months of age. J Pediatr

  358. 1999;134:33-41.

  359. Jacobson JL, Jacobson SW. Prenatal exposure to polychlorinated biphenyls

  360. and attention at school age. J Pediatr 2003;143:780-8.

  361. Gray KA, Klebanoff MA, Brock JW, Zhou H, Darden R et al. In utero

  362. exposure to background levels of polychlorinated biphenyls and cognitive

  363. functioning among school-age children. J Epidemiol 2005;162:17-26.

  364. Orito K, Gotanda N, Murakami M, Ikeda T, Egashira N et al. Prenatal

  365. exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126) promotes anxiogenic

  366. behavior in rats. Tohoku J Exp Med 2007;212:151-7.

  367. Levin ED, Schantz SL, Bowman RE. Delayed spatial alternation deficits

  368. resulting from perinatal PCB exposure in monkeys. Arch Toxicol

  369. 1988;62:267-73.

  370. Schantz SL, Levin ED, Bowman RE, Heironimus MP, Laughlin NK

  371. Effects of perinatal PCB exposure on discrimination-reversal learning

  372. in monkeys. Neurotoxicol Teratol 1989;11:243-50.

  373. Gilbert ME, Crofton KM. Developmental exposure to a commercial PCB

  374. mixture (Aroclor 1254) produces a persistent impairment in long-term

  375. potentiation in the rat dentate gyrus in vivo. Brain Res 1999;850:87-95.

  376. Gilbert ME. Perinatal exposure to polychlorinated biphenyls alters excitatory

  377. synaptic transmission and short-term plasticity in the hippocampus

  378. of the adult rat. Neurotoxicology 2003;24:851-60.

  379. Bushnell PJ, Rice DC. Behavioral assessments of learning and attention

  380. in rats exposed perinatally to 3,3',4,4',5-pentachlorobiphenyl (PCB 126)

  381. Neurotoxicol Teratol 1999;21:381-92.

  382. Niemi WD, Audi J, Bush B, Carpenter DO. PCBs reduce long-term potentiation

  383. in the CA1 region of rat hippocampus. Exp Neurol 1998;151:26-34.

  384. Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term

  385. potentiation (LTP) is reduced by a coplanar PCB congener. Neurotoxicology

  386. 2004;25:981-8.

  387. Tharappel JC, Lee EY, Robertson LW, Spear BT, Glauert HP. Regulation

  388. of cell proliferation, apoptosis, and transcription factor activities during

  389. the promotion of liver carcinogenesis by polychlorinated biphenyls.

  390. Toxicol Appl Pharmacol 2002;179:172-84.

  391. Silberhorn EM, Glauert HP, Robertson LW. Carcinogenicity of polyhalogenated

  392. biphenyls: PCBs and PBBs. Crit Rev Toxicol 1990;20:439–496.

  393. Espandiari P, Glauert HP, Lehmler HJ, Lee EY, Srinivasan C et al. Polychlorinated

  394. biphenyls as initiators in liver carcinogenesis: resistant

  395. hepatocyte model. Toxicol Appl Pharmacol 2003;186:55–62.

  396. Oakley GG, Devanaboyina U, Robertson LW, Gupta RC. Oxidative DNA

  397. damage induced by activation of polychlorinated biphenyls (PCBs):

  398. implications for PCB-induced oxidative stress in breast cancer. Chem

  399. Res Toxicol 1996;9:1285–1292.

  400. Laden F, Ishibe N, Hankinson SE, Wolff MS, Gertig DM et al. Polychlorinated

  401. biphenyls, cytochrome P450 1A1, and breast cancer risk in the Nurses’

  402. Health Study. Cancer Epidemiol Biomarkers Prev 2002;11:1560-5.

  403. Zhang Y, Wise JP, Holford TR, Xie H, Boyle P et al. Serum polychlorinated

  404. biphenyls, cytochrome P-450 1A1 polymorphisms, and risk of breast

  405. cancer in Connecticut women. Am J Epidemiol 2004;160:1177-83.

  406. Strathmann J, Schwarz M, Tharappel JC, Glauert HP, Spear BT et al.

  407. PCB 153, a non-dioxin-like tumor promoter, selects for betacatenin(

  408. Catnb)-mutated mouse liver tumors. Toxicol Sci 2006;93:34-40.

  409. Breivik K, Sweetman A, Pacyna JM, Jones KC. «Towards a global historical emission inventory for selected PCB congeners a mass balance approach 1. Global production and consumption». Science Total Environment 2002;290:181-198.

  410. Black KK, Carlisle J, Siegel D, Salinas J. Health concerns and environmental issue with PVC-containing building materials in green buildings integrated wast management board. USA: California Environmental Protection Agency; 2006; p. 11.

  411. Safe S, Safe L, Mullin M. Polychlorinated biphenyls: environmental occurrence and analysis. En: Polychlorinated biphenyls (PCBs): Mammalian and environmental toxicology. Safe S, Hutzinger O (eds.). Berlin: Springer-Verlag; 1987; 1–13.

  412. Evans MS, Noguchi GE, Rice CP. The biomagnification of polychlorinated biphenyls, toxaphene and DDT compounds in a lake Michigan offshore food web. Arch Environ Contam Toxicol 1991;20:87–93.

  413. Tilson HA, Kodavanti PR, Mundy WR, Bushnell PJ. Neurotoxicity of environmental chemicals and their mechanism of action. Toxicol Lett 1998;102–103:631–635.

  414. Stewart P, Reihman J, Lonky E, Darvill T, Pagano J. Prenatal PCB exposure and neonatal behavioral assessment scale (NBAS) performance. Neurotoxicol Teratol 2000;22:21-29.

  415. Muir D, Sverko E. Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: a critical appraisal. Anal Bioanal Chem 2006;386:769–789.

  416. EPA. Method 8082. Polychlorinated biphenyls (PCBs) by capillary column gas chromatography. USA: Environmental Protection Agency; 1995.

  417. EPA. Method 1668, Revision A: Chlorinated biphenyl congeners in water, soil, sediment, and tissue by HRGC/HRMS. USA: Environmental Protection Agency. Office of Water; 1999.

  418. Hess P, de Boer J, Cofino WP et al. Critical review of the analysis of nonand mono-orthochlorobiphenyls. J Chromatogr 1995;703:417-465.

  419. Analytical methods en http://www.atsdr.cdc.gov/toxprofiles/ tp17-c7.pdf

  420. Sherry J. Environmental immunoassays and other bioanalytical methods: overview and update. Chemosphere 1997;34:1011-25.

  421. Behnisch PA, Hosoe K, Sakai S. Combinatorial bio/chemical analysis of dioxin and dioxin-like compounds in waste recycling, feed/food, humans/wildlife and the environment. Environ Int 2001;27:495-519.

  422. Schmidt JV, Bradfield CA. Ah receptor signaling pathways. Annu Rev Cell Dev Biol 1996;12:55-89.

  423. Safe S, Bandiera S, Sawyer T, Robertson L, Safe L et al. PCBs: Structurefunction relationships and mechanism of action. Environmental Health Perspectives 1985;60:47-56.

  424. McKinney JD, Chae K, McConnelit EE, Birnbaumt LS. Structure-induction versus structure-toxicity relationships for polychiorinated biphenyls and related aromatic hydrocarbons. Environmental Health Perspectives 1985;60:57-68.

  425. Rowlands JC, Gustafsson JA. Aryl hydrocarbon receptor-mediated signal transduction. Crit Rev Toxicol 1997;27:109-34.

  426. Gauger KJ, Giera S, Sharlin DS, Bansal R, Iannacone E et al. Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after cytochrome P4501A1 activation in rat pituitary GH3 cells. Environ Health Perspect 2007;115:1623-30.

  427. Martinez JM, Afshari CA, Bushel PR, Masuda A, Takahashi T et al. «Differential toxicogenomic responses to 2,3,7,8-tetrachlorodibenzo-pdioxin in malignant and nonmalignant human airway epithelial cells». Toxicol Sci 2002;69:409–23.

  428. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 2003;43:309-34.

  429. McKinney JD, Waller CL. Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect 1994;102:290-7.

  430. Hagmar L. Polychlorinated biphenyls and thyroid status in humans: a review. Thyroid 2003;13:1021-8.

  431. La Rocca C, Mantovani A. From environment to food: the case of PCB. Ann Ist Super Sanita 2006;42:410-6.

  432. Langer P. Persistent organochlorinated pollutants (PCB, DDE, HCB, dioxins, furans) and the thyroid-review 2008. Endocr Regul 2008;42:79-104.

  433. Golden RJ, Noller KL, Titus-Emstoff L, Kaufman RH, Mittendorf R et al. Environmental endocrine modulators and human health: an assessment of the biological evidence. Crit Rev Toxicol 1998;28:109-227.

  434. Van den Berg KJ, Zurcher C, Brouwer A. Effects of 3,4,3',4'-tetrachlorobiphenyl on thyroid function and histology in marmoset monkeys. Toxicol Lett 1988;41:77-86.

  435. Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ et al. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health 1998;14:59-84.

  436. Bastomsky CH. Effects of a polychlorinated biphenyl mixture (aroclor 1254) and DDT on biliary thyroxine excretion in rats. Endocrinology 1974;95:1150-5.

  437. Ness DK, Schantz SL, Moshtaghian J, Hansen LG. Effects of perinatal exposure to specific PCB congeners on thyroid hormone concentrations and thyroid histology in the rat. Toxicol Lett 1993;68:311-23.

  438. Seo BW, Li MH, Hansen LG, Moore RW, Peterson RE et al. Effects of gestational and lactational exposure to coplanar polychlorinated biphenyl (PCB) congeners or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on thyroid hormone concentrations in weanling rats. Toxicol Lett 1995;78:253-62.

  439. Morse DC, Wehler EK, Wesseling W, Koeman JH, Brouwer A. Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol 1996;136:269-79.

  440. Hallgren S, Sinjari T, Håkansson H, Darnerud PO. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol 2001;75:200-8.

  441. Wade MG, Parent S, Finnson KW, Foster W, Younglai E et al. Thyroid toxicity due to subchronic exposure to a complex mixture of 16 organochlorines, lead, and cadmium. Toxicol Sci 2002;67:207-18.

  442. Meerts IA, Hoving S, Van den Berg JH, Weijers BM, Swarts HJ et al. Effects of in utero exposure to 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) on developmental landmarks, steroid hormone levels, and female estrous cyclicity in rats. Toxicol Sci 2004;82:259-67.

  443. Roegge CS, Morris JR, Villareal S, Wang VC, Powers BE et al. Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg. Neurotoxicol Teratol 2006;28:74-85.

  444. McLanahan ED, Campbell JL Jr, Ferguson DC, Harmon B, Hedge JM et al. Low-dose effects of ammonium perchlorate on the hypothalamicpituitary- thyroid axis of adult male rats pretreated with PCB126. Toxicol Sci 2007;97:308-17.

  445. Fisher JW, Campbell J, Muralidhara S, Bruckner JV, Ferguson D et al. Effect of PCB 126 on hepatic metabolism of thyroxine and perturbations in the hypothalamicpituitary-thyroid axis in the rat. Toxicol Sci 2006;90:87–95.

  446. Hood A, Hashmi R, Klaassen CD. Effects of microsomal enzyme inducers on thyroid-follicular cell proliferation, hyperplasia, and hypertrophy. Toxicol Appl Pharmacol 1999;160:163–170.

  447. Eriksson P, Fischer C, Fredriksson A. Polybrominated diphenyl ethers, a group of brominated flame retardants, can interact with polychlorinated biphenyls in enhancing developmental neurobehavioral defects. Toxicological Sciences 2006;94:302–309.

  448. Lamb MR, Taylor S, Liu X, Wolff MS, Borrell L et al. Prenatal exposure to polychlorinated biphenyls and postnatal growth: a structural analysis. Environ Health Perspect 2006;114:779-85.

  449. León-Olea M, Talavera-Cuevas E, Sánchez-Islas E, Mucio-Ramírez S, Miller-Pérez C et al. Effects of polychlorinated biphenyls on nitrergic neurons and nitric oxide synthase activity in rat pups brain. Program No. 759.10. San Diego, CA: Society for Neuroscience Abstract; 2004.

  450. Coburn CG, Currás-Collazo MC, Kodavanti PR. Polybrominated diphenyl ethers and ortho-substituted polychlorinated biphenyls as neuroendocrine disruptors of vasopressin release: effects during physiological activation in vitro and structure-activity relationships. Toxicol Sci 2007;98:178-86.

  451. Coburn CG, Gillard ER, Currás-Collazo MC. Dietary exposure to aroclor 1254 alters central and peripheral vasopressin release in response to dehydration in the rat. Toxicol Sci 2005;84:149-56.

  452. Carpenter OD. Polychlorinated biphenyls (PCBs): Routes of exposure and effects on human health. Reviews Enviromental Health 2006;21:1-23.

  453. Codru N, Schymura MJ, Negoita S. Akwesasne task Force on Environment, Rej R, Carpenter DODiabetes in relation to serum levels of polychlorinated biphenyls and chlorinated pesticides in adult Native Americans. Environ Health Perspect 2007;115:1442-7.

  454. Kovaceviæ R, Vojinoviæ-Miloradov M, Teodoroviæ I, Andriæ S. Effect of PCBs on androgen production by suspension of adult rat Leydig cells in vitro. J Steroid Biochem Mol Biol 1995;52:595-7.

  455. Andric SA, Kostic TS, Dragisic SM, Andric NL, Stojilkovic SS et al. Acute effects of polychlorinated biphenyl-containing and -free transformer fluids on rat testicular steroidogenesis. Environ Health Perspect 2000;108:955-9.

  456. Portigal CL, Cowell SP, Fedoruk MN, Butler CM, Rennie PS et al. Polychlorinated biphenyls interfere with androgen-induced transcriptional activation and hormone binding. Toxicol Appl Pharmacol 2002;179:185-94.

  457. Bush B, Bennett AH, Snow JT. Polychlorobiphenyl congeners, p,p’-DDE, and sperm function in humans. Arch Environ Contam Toxicol 1986;15:333-41.

  458. Hauser R, Altshul L, Chen Z, Ryan L, Overstreet J et al. Environmental organo chlorines and semen quality: results of a pilot study. Environ Health Perspect 2002;110:229-33.

  459. Hsu PC, Huang W, Yao WJ, Wu MH, Guo YL et al. Sperm changes in men exposed to polychlorinated biphenyls and dibenzofurans. JAMA 2003;289:2943-4.

  460. Guo YL, Hsu CC, Lambert GH. Effects of environmental chemicals (EC) on sexual maturation. Pediatr Res 1996;39:74A.

  461. Hardell L, Bavel B, Lindström G, Eriksson M, Carlberg M. In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl 2006;29:228-34.

  462. Cooper GS, Klebanoff MA, Promislow J, Brock JW, Longnecker MP. Polychlorinated biphenyls and menstrual cycle characteristics. Epidemiology 2005;16:191-200.

  463. Toft G, Axmon A, Lindh CH, Giwercman A, Bonde JP. Menstrual cycle characteristics in European and Inuit women exposed to persistent organochlorine pollutants. Hum Reprod 2008;23:193-200.

  464. Pauwels A, Schepens PJ, D’Hooghe T, Delbeke L, Dhont M et al. The risk of endometriosis and exposure to dioxins and polychlorinated biphenyls: a case-control study of infertile women. Hum Reprod 2001;16:2050-5.

  465. Rier SE, Turner WE, Martin DC, Morris R, Lucier GW et al. Serum levels of TCDD and dioxin-like chemicals in Rhesus monkeys chronically exposed to dioxin: correlation of increased serum PCB levels with endometriosis. Toxicol Sci 2001;59:147-59.

  466. Mocarelli P, Gerthoux PM, Ferrari E, Patterson DG Jr, Kieszak SM et al. Paternal concentrations of dioxin and sex ratio of offspring. Lancet 2000;355:1858-63.

  467. Weisskopf MG, Anderson HA, Hanrahan LP. Great Lakes Consortium. Decreased sex ratio following maternal exposure to polychlorinated biphenyls from contaminated Great Lakes sport-caught fish: a retrospective cohort study. Environ Health 2003;2:2.

  468. Simmons SL, Cummings JA, Clemens LG, Nunez AA. Exposure to PCB 77 affects the maternal behavior of rats. Physiol Behav 2005;84:81-6.

  469. Cummings JA, Nunez AA, Clemens LG. A cross-fostering analysis of the effects of PCB 77 on the maternal behavior of rats. Physiol Behav 2005;85:83-91.

  470. Cromwell HC, Johnson A, McKnight L, Horinek M, Asbrock C et al. Effects of polychlorinated biphenyls on maternal odor conditioning in rat pups. Physiol Behav 2007;91:658-66.

  471. Vos JG, van Driel-Grootenhuis L. PCB-induced suppression of the humoral and cell-mediated immunity in guinea pigs. Sci Total Environ 1972;1:289–302.

  472. Allen JR, Barsotti DA. The effects of transplacental and mammary movement of PCBs on infant rhesus monkeys. Toxicology 1976;6:331–40.

  473. Smialowicz RJ, Andrews JE, Riddle MM, Rogers RR, Luebke RW et al. Evaluation of the immunotoxicity of low level PCB exposure in the rat. Toxicology 1989;56:197–211.

  474. Knobil E. Hormonally active agents in the environment Washington, D.C.: National Academy Press; 1999; p. 430.

  475. Lyche J, Larsen H, Skaare JU, Tverdal A, Dahl E et al. Effects of perinatal exposure to low doses of PCB 153 and PCB 126 on lymphocyte proliferation and hematology in goat kids. J Toxicol Environ Health 2004;67:889-904.

  476. Lu YC, Wu YC. Clinical findings and immunological abnormalities in Yu-Cheng patients. Environ Health Perspect 1985;59:17–29.

  477. Weisglas-Kuperus N, Sas TC, Koopman-Esseboom C, van der Zwan CW, De Ridder MA et al. Immunologic effects of background prenatal and postnatal exposure to dioxins and polychlorinated biphenyls in Dutch infants. Pediatr Res 1995;38:404–410.

  478. Weisglas-Kuperus N, Patandin S, Berbers GA, Sas TC, Mulder PG et al. Immunologic effects of background exposure to polychlorinated biphenyls and dioxins in Dutch preschool children. Environ Health Perspect 2000;108:1203–1207.

  479. Agrawal AK, Tilson HA, Bondy SC. 3,4,3',4'-Tetrachlorobiphenyl given to mice prenatally produces long-term decreases in striatal dopamine and receptor binding sites in the caudate nucleus. Toxicol Lett 1981;7:417-24.

  480. Safe S. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environ Health Perspect 1993;100:259-68.

  481. Seegal RF, Brosch KO, Okoniewski RJ. Effects of in utero and lactational exposure of the laboratory rat to 2,4,2',4'- and 3,4,3',4'-tetrachlorobiphenyl on dopamine function. Toxicol Appl Pharmacol 1997;146:95-103.

  482. Jacobson JL, Fein GG, Jacobson SW, Schwartz PM, Dowler JK. The transfer of polychlorinated biphenyls (PCBs) and polybrominated biphenyls(PBBs) across the human placenta and into maternal milk. Am J Public Health 1984;74:378-9.

  483. Goldey ES, Kehn LS, Lau C, Rehnberg GL, Crofton KM. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol 1995;135:77-88.

  484. Brouwer A, Longnecker MP, Birnbaum LS, Cogliano J, Kostyniak P et al. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 1999;107:639-49.

  485. Darnerud PO, Morse D, Klasson-Wehler E, Brouwer A. Binding of a 3,3',4,4'-tetrachlorobiphenyl (CB-77) metabolite to fetal transthyretin and effects on fetal thyroid hormone levels in mice. Toxicology 1996;106:105-14.

  486. Rhind SM. Endocrine disrupting compounds and farm animals: their properties, actions and routes of exposure. Domest Anim Endocrinol 2002;23:179-87.

  487. Murai K, Okamura K, Tsuji H, Kajiwara E, Watanabe H et al. Thyroid function in «yusho» patients exposed to polychlorinated biphenyls (PCB). Environ Res 1987;44:179-87.

  488. Herr DW, Goldey ES, Crofton KM. Developmental exposure to Aroclor 1254 produces low-frequency alterations in adult rat brainstem auditory evoked responses. Fundam Appl Toxicol 1996;33:120-8.

  489. Uziel A. Periods of sensitivity to thyroid hormone during the development of the organ of Corti. Acta Otolaryngol 1986;429(sulp.):23-7.

  490. Crofton KM, Ding D, Padich R, Taylor M, Henderson D. Hearing loss following exposure during development to polychlorinated biphenyls: la cochlear site of action. Hear Res 2000;144:196-204.

  491. Kenet T, Froemke RC, Schreiner CE, Pessah IN, Merzenich MM. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex. Proc Natl Acad Sci USA 2007;104:7646-51.

  492. Fritsche E, Cline JE, Nguyen NH, Scanlan TS, Abel J. Polychlorinated biphenyls disturb differentiation of normal human neural progenitor cells: clue for involvement of thyroid hormone receptors. Environ Health Perspect 2005;113:871-6.

  493. Seegal RF. Epidemiological and laboratory evidence of PCB- induced neurotoxicity. Crit Rev Toxicol 1996;26:709-737.

  494. Tilson HA, Kodavanti PR. Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicology 1997;18:727-743.

  495. Gorell JM, Johnson CC, Rybicki BA, Peterson EL et al. The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998;50:1346-50.

  496. Fischer LJ, Seegal RF, Ganey PE, Pessah IN, Kodavanti PR. Symposium overview: toxicity of non coplanar PCBs. Toxicol Sci 1998;41:49-61.

  497. Angus WG, Contreras ML. The effects of Aroclor 1254 on undifferentiated and NGF-stimulated differentiating PC12 cells. Neurotoxicology 1994;15:809-18.

  498. Corrigan FM, French M, Murray L. Organochlorine compounds in human brain. Hum Exp Toxicol 1996;15:262-4.

  499. Corrigan FM, Murray L, Wyatt CL, Shore RF. Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp Neurol 1998;150:339-42.

  500. Seegal RF, Bush B, Brosch KO. Decreases in dopamine concentrations in adult, non-human primate brain persist following removal from polychlorinated biphenyls. Toxicology 1994;86:71-87.

  501. Mariussen E, Fonnum F. The effect of polychlorinated biphenyls on the high affinity uptake of the neurotransmitters, dopamine, serotonin, glutamate and GABA, into rat brain synap-tosomes. Toxicology 2001;159:11-21.

  502. Mariussen E, Andersson PL, Tysklind M, Fonnum F. Effect of polychlorinated biphenyls on the uptake of dopamine into rat brain synaptic vesicles: a structure-activity study. Toxicol Appl Pharmacol 2001;175:176-183.

  503. Bemis JC, Seegal RE. PCB-induced inhibition of the vesicu-lar monoamine transporter predicts reduction in the synaptosomal dopamine content. Toxicol Sci 2004;80:295-299.

  504. Richardson JR, Miller GW. Acute exposure to aroclor 1016 or 1260 differentially affects dopamine transporter and vesicular monoamine transporter 2 levels. Toxicol Lett 2004;148:29-40.

  505. Malkiewicz K, Mohammed R, Folkesson R, Winblad B, Szutowski M et al. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain. Toxicol Lett 2006;161:152-8.

  506. Burke RE. Cl-Synuclein and parkin: coming together of pieces in puzzle of Parkinson’s disease. Lancet 2001;358:1567-1568.

  507. Di Rosa G, Puzzo D, Sant’Angelo A, Trinchese E, Arancio, O. Cl-Synuclein: between synaptic function and dysfunction. Histol Histopathol 2003;18:1257-1266.

  508. Giasson BI, Lee VM. Parkin and the molecular pathways of Parkinson’s disease. Neuron 2001;31:885-888.

  509. Dev KK, van der Putten H, Sommer B, Rovelli G. Part 1: Parkin-associated proteins and Parkinson’s disease. Neuropharmacology 2003;45:1-13.

  510. Tumer PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003;70:1-32.

  511. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD et al. a-Synuclein and Parkinson’s disease. FASEB J 2004;18:617-626.

  512. Canzoniero LM, Adornetto A, Secondo A, Magi S, Dell’aversano C et al. Involvement of the nitric oxide/protein kinase G pathway in polychlorinated biphenyl-induced cell death in SH-SY 5Y neuroblastoma cells. J Neurosci Res 2006;84:692-7.

  513. Yuansheng T, Renji S, David L, David O. Carpenter. Ortho-substituted but not coplanar PCBs rapidly kill cerebelar granule cells. Toxicological Sciences 2004;79:147-156.

  514. Lee DW, Opanashuk LA. Polychlorinated biphenyl mixture aroclor 1254-induced oxidative stress plays a role in dopaminergic cell injury. Neurotoxicology 2004;25:925-939.

  515. Fitzgerald EF [My paper], Belanger EE, Gomez MI, Cayo M, Mccaffrey RJet al. Polychlorinated Biphenyl Exposure and Neuropsychological Status among Older Residents of Upper Hudson River Communities. Environmental Health Perspectives 2008;116:209-215.

  516. Kao-Chang L, Nai-Wen G, Pei-Chien T, Chiu-Yueh Y, Yue Let al. Neurocognitive changes among elderly exposed to PCBs/PCDFs in Taiwan. Environmental Health Perspectives 2008;116:184-189.

  517. Fellows LK, Farah MJ. Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 2003;126:1830-1837.

  518. Seegal RF, Okoniewski RJ, Brosch KO, Bemis JC. Polychlorinated biphenyls alter extraneuronal but not tissue dopamine concentrations in adult rat striatum: an in vivo microdialysis study. Environ Health Perspect 2002;110:1113-7.

  519. Lyng GD, Snyder-Keller A, Seegal RF. Polychlorinated biphenyl-induced neurotoxicity in organotypic cocultures of developing rat ventral mesencephalon and striatum. Toxicol Sci 2007;97:128-39.

  520. Daniels JL, Longnecker MP, Klebanoff MA, Gray KA, Brock JW et al. Prenatal exposure to low-level polychlorinated biphenyls in relation to mental and motor development at 8 months. Am J Epidemiol 2003;157:485-92.

  521. Bayley N. Manual for the Bayley scales of infants development. Segunda edición. New York: Psychological Corporation; 1993.

  522. Nakajima S, Saijo Y, Kato S, Sasaki S, Uno A et al. Effects of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor development in Japanese children at 6 months of age. Environmental Health Perspectives 2006;114:773-778.

  523. Jacobson JL, Jacobson SW, Humphrey HE. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol 1990;12:319-26.

  524. Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ et al. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr 1999;134:33-41.

  525. Jacobson JL, Jacobson SW. Prenatal exposure to polychlorinated biphenyls and attention at school age. J Pediatr 2003;143:780-8.

  526. Gray KA, Klebanoff MA, Brock JW, Zhou H, Darden R et al. In utero exposure to background levels of polychlorinated biphenyls and cognitive functioning among school-age children. J Epidemiol 2005;162:17-26.

  527. Orito K, Gotanda N, Murakami M, Ikeda T, Egashira N et al. Prenatal exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126) promotes anxiogenic behavior in rats. Tohoku J Exp Med 2007;212:151-7.

  528. Levin ED, Schantz SL, Bowman RE. Delayed spatial alternation deficits resulting from perinatal PCB exposure in monkeys. Arch Toxicol 1988;62:267-73.

  529. Schantz SL, Levin ED, Bowman RE, Heironimus MP, Laughlin NK Effects of perinatal PCB exposure on discrimination-reversal learning in monkeys. Neurotoxicol Teratol 1989;11:243-50.

  530. Gilbert ME, Crofton KM. Developmental exposure to a commercial PCB mixture (Aroclor 1254) produces a persistent impairment in long-term potentiation in the rat dentate gyrus in vivo. Brain Res 1999;850:87-95.

  531. Gilbert ME. Perinatal exposure to polychlorinated biphenyls alters excitatory synaptic transmission and short-term plasticity in the hippocampus of the adult rat. Neurotoxicology 2003;24:851-60.

  532. Bushnell PJ, Rice DC. Behavioral assessments of learning and attention in rats exposed perinatally to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) Neurotoxicol Teratol 1999;21:381-92.

  533. Niemi WD, Audi J, Bush B, Carpenter DO. PCBs reduce long-term potentiation in the CA1 region of rat hippocampus. Exp Neurol 1998;151:26-34.

  534. Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term potentiation (LTP) is reduced by a coplanar PCB congener. Neurotoxicology 2004;25:981-8.

  535. Tharappel JC, Lee EY, Robertson LW, Spear BT, Glauert HP. Regulation of cell proliferation, apoptosis, and transcription factor activities during the promotion of liver carcinogenesis by polychlorinated biphenyls. Toxicol Appl Pharmacol 2002;179:172-84.

  536. Silberhorn EM, Glauert HP, Robertson LW. Carcinogenicity of polyhalogenated biphenyls: PCBs and PBBs. Crit Rev Toxicol 1990;20:439–496.

  537. Espandiari P, Glauert HP, Lehmler HJ, Lee EY, Srinivasan C et al. Polychlorinated biphenyls as initiators in liver carcinogenesis: resistant hepatocyte model. Toxicol Appl Pharmacol 2003;186:55–62.

  538. Oakley GG, Devanaboyina U, Robertson LW, Gupta RC. Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer. Chem Res Toxicol 1996;9:1285–1292.

  539. Laden F, Ishibe N, Hankinson SE, Wolff MS, Gertig DM et al. Polychlorinated biphenyls, cytochrome P450 1A1, and breast cancer risk in the Nurses’ Health Study. Cancer Epidemiol Biomarkers Prev 2002;11:1560-5.

  540. Zhang Y, Wise JP, Holford TR, Xie H, Boyle P et al. Serum polychlorinated biphenyls, cytochrome P-450 1A1 polymorphisms, and risk of breast cancer in Connecticut women. Am J Epidemiol 2004;160:1177-83.

  541. Strathmann J, Schwarz M, Tharappel JC, Glauert HP, Spear BT et al. PCB 153, a non-dioxin-like tumor promoter, selects for betacatenin (Catnb)-mutated mouse liver tumors. Toxicol Sci 2006;93:34-40.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Salud Mental. 2009;32

ARTíCULOS SIMILARES

CARGANDO ...