medigraphic.com
ENGLISH

Salud Mental

ISSN 0185-3325 (Impreso)
Órgano Oficial del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2000, Número 3

<< Anterior Siguiente >>

Salud Mental 2000; 23 (3)


Neurobiology of addiction neuroanatomical, neurochemical, molecular and genetic aspects of morphine and cocaine addiction PART I

Leff P, Medina-Mora ME, Calva JC, Valdés A, Acevedo R, Morales A, Medécigo M, Antón B
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 45
Paginas: 46-51
Archivo PDF: 119.98 Kb.


PALABRAS CLAVE

Morfina, cocaína, sistema mesocorticolímbico, dopamina, neurona, receptor opioide, trasmisión neural, adicción.

RESUMEN

La adicción representa un importante problema de salud a nivel clínico y social en múltiples países. Desde el punto de vista médico, la adicción es un complejo fenómeno neurobiológico que afecta diversos procesos funcionales y moleculares en diferentes áreas específicas del cerebro de los mamíferos, incluyendo al humano. Diversos modelos animales sujetos a esquemas de autoadministración farmacológica han sido estudiados con el objeto de investigar las propiedades adictivas de múltiples sustancias psicotrópicas, como es el caso de la morfina, la heroína y la cocaína. Estos estudios han concluido que los efectos psicoadictivos de estas sustancias se deben principalmente a la alteración de la actividad neuronal del sistema de transmisión dopaminérgico mesocorticolímbico. Este sistema neuronal sufre cambios funcionales a nivel electrofisiológico, neuroquímico y genómico, que participan en forma concertada en el desarrollo y establecimiento a largo plazo, en el reforzamiento y en la recompensa al consumo de las sustancias adictivas antes mencionadas. Este trabajo describe el cuerpo de conocimientos actuales relacionados con los cambios funcionales que se desarrollan y establecen durante el fenómeno adictivo a la morfina, la heroína y la cocaína.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. AMERICAN PSYCHIATRIC ASSOCIATION: Diagnostic and Statistical Manual of Mental Disorders. Cuarta edición. American Psychiatric Press, Washington, 1993.

  2. BENOWITZ N L: Clinical pharmacology and toxicology of cocaine. Pharmacol Toxicol, 72:3-12, 1993.

  3. BERENDESE HW, GALLIS- DE GRAAF Y, GROENEWEGEN HJ: Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol, 316:314-347, 1992.

  4. BROG JS, DEUTCH AY, ZAHAM DS: Afferent projection to the nucleus accumbens core and shell in the rat. Soc Neuroaci Abstr, 17:454, 1991.

  5. CAINE SB, HEINRICHS SC, COFFIN VL , KOOB GF: Effects of the dopamine Dl antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration. Brain Res, 692:47-56, 1995.

  6. CARRELI RM, DEADWYLER SA: Dual factors controlling activity of nucleus accumbens cell firing during cocaine self administration. Synapse, 24:308-311, 1996.

  7. CORRIGALL WA: Antagonist treatment in the nucleus accumbens or periaqueductal grey affects heroin self administration. Pharmacol Biochem Behav, 30:443-450, 1988.

  8. CHANG JY, SAWYER SF, LEE RS, WOODWARD DJ: Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self administration in freely moving rats. J Neurosci, 14:1224-1244, 1994.

  9. CHANG J Y, ZHANG L, JANAK P H, WOODWARD D J: Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self administration in freely moving rats. Brain Res, 754:12-20, 1997.

  10. DI CHIARA G, NORTH R A: Neurobiology of opiate abuse. Trends Pharmacol Sci, 13:185-193, 1992.

  11. DIANA M, PSITIS M, CARBONI S, GESSA G L, ROSSETI Z L: Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: Electrophysiological and biochemical evidence. Proctl. Natl Acad Sci USA, 90:7966-7969, 1993.

  12. EPPING-JORDAN M P, MARKOU A, KOOB G F: The dopaminergic Dl receptor antagonist SCH23390 injected into the dorsolateral bed nucleus of the stria terminalis decreased cocaine reward in the rat. Brain Res, 784:105-115, 1998.

  13. GIACCHINO J L, HENRICKSEN S L: Opioid effects on activation of neurons in the medial prefontral cortex. Prog Neuro Psychopharmacol, 22:1157-78, 1998.

  14. GIROS B, JABER M, JONES S R, WIGHTMAN R M, CARON M G: Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379:606-612, 1996.

  15. KIEFFER L B: Opioids: first lessons from knockout mice. Trends Pharmacol Sci, 20:19-26, 1999.

  16. KIYATKIN E A, REBEC G V: Dopaminergic modulation of glutamate induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol, 67(1):142-153, 1996.

  17. KIYATKIN EA, REBEC GV: Activity of presumed dopaminergic neurons in ventral tegmental area during heroin self administration. Neuroreport, 8(11):2581-5, 1997.

  18. KOOB GF, BLOOM FE: Cellular and molecular mechanisms of drug dependence. Science, 242: 715-723, 1988.

  19. KOOB GF, LE MOAL M: Drug abuse: Hedonic homeostasis dysregulation. Science, 278:715-723, 1997.

  20. KOOB GF, SANNA PP, BLOOM FE: Neuroscience of addiction. Review Neuron, 21:461-476, 1998.

  21. MANSOUR A, KHACHATURIAN H, LEWIS ME, AKIL H, WATSON SJ: Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci. 7:2445-64, 1987.

  22. MANSOUR A, KHACHATURIAN H, LEWIS ME, AKIL H, WATSON SJ: Anatomy of CNS opioid receptors. Trends Neurosci, 11:308-314, 1988.

  23. MANSOUR A, FOX CA, AKIL H, WATSON SJ: Opioid receptor RNAM expression in the rat CNS: anatomical and functional implications. Trends Neurosci, 18(1):22-29, 1995.

  24. MATHES HWD, MALDONADO R, SIMONIN F, VALVERDE O, SLOWE S, KITCHEN I, BEFORT K, DIERICH A, LE MEUR M, DOLLE P, KIEFFER B: Loss of morphineinduced analgesia, reward effect and withrawal symptoms in mice lacking the mu-opioid receptor gene. Nature, 383:819-823, 1996.

  25. MATTHEWS R T, GERMAN D C: Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience, 11:617-625, 1984.

  26. NEGUS SS, HENRICKSEN SJ, MATTOX A, PASTERNAK GW, PORTOGHESE PS, TAKEMORI AE, WEINGER MB, KOOB GF: Effect of antagonsits selective for mu, delta, and kappa opioid receptors on the reinforcing effects of heroin in rats. J Pharmacol Exp Ther, 265:1245-1252, 1993.

  27. NESTLER EJ: Molecular mechanism of drug addiction. J Neurosci, 12:2439-50, 1992

  28. NESTLER EJ, AGHAJANIAN GK: Molecular and cellular basis of addiction. Science, 278:68-73, 1997.

  29. NESTLER EJ: Under siege: The brain on opiates. Neuron, 16:897-900, 1996.

  30. NESTLER EJ, HOPE BT, WIDNELL KL: Drug addiction: A model for the molecular basis of neural plasticity. Neuron, 11:995-1006, 1993.

  31. PEOPLES LL, UZWIAK AJ, GEE F, WEST OM: Operant behavior during sessions of intravenous cocaine infusion is necessary and sufficient for phasic firing of single nucleus accumbens neurons. Brain Res, 757:280-284, 1997.

  32. PEOPLES LL, UZWIAK AJ, GEE F, WEST OM: Tonic firing on rat nucleus accumbens neurons: changes during the first 2 weeks of daily cocaine self administration sessions. Brain Res, 822:231-236, 1999.

  33. PEOPLES LL, WEST MO: Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine-self administration. J Neurosci, 16:3459-73, 1996.

  34. PETTIT HO, JUSTICE JB: Dopamine in the nucleus accumbens during cocaine self administration as studied by in vivo microdyalisis. Pharmacol Biochem Behav, 34:899-904, 1989.

  35. ROBBINS TW, EVERITT BJ: Drug addiction: bad habits add up. Nature, 398:567-570, 1999.

  36. ROBERTS D CS, KOOB GF, KLONOFF P, FIBIGER HC: Extinction and recovery of cocaine self administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav, 12:781-787, 1980.

  37. ROCHA B A, FUMAGALLI F, GAINETDINOV RR, JONES SR, ATOR R, GIROS B, MILLER GW, CARON MG: Cocaine self administration in dopamine transporter knockout mice. Nature Neurosci, 1:132-137, 1998.

  38. SELF DW, NESTLER EJ: Molecular mechanisms of drug reinforcement and addiction. Ann Rev Neuroci, 18:463-495, 1995.

  39. SHIPPENBERG TS, HERZ A, SPANAGEL R, BAIS-KUBIK R, STEIN C: Conditioning of opioid reinforcement: neuroanatomical and neurochemical substrates. Ann N Y Acad Sci, 654:347-356, 1992.

  40. SHOAIB M, SPANAGEL R: Mesolimbic sites mediate the discriminative stimulus effects of morphine. European J Pharmacol, 252:69-75, 1994.

  41. VACCARINO FF, BLOOM FE, KOOB GF: Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat. Psychopharmacology, 86:37-42, 1985.

  42. WEISS F, PARSONS LH, SCHULTEIS G, HYTIA P, LORANG MT, BLOOM FE, KOOB GF: Ethanol self administration restores withrawal associated deficiencies in accumbal dopamine and 5-hydroxytrytamine release in dependen rats. J Neurosci, 16:3474-85, 1996.

  43. WIDNELL K, SELF DW, LANE SB, RUSSELL DS, VAIDYA V, MISERENDINO MDJ, RUBIN CS, DUMAN RS, NESTLER EJ: Regulation of CREB expression: In vivo evidence for a functional role in morphine action in the nucleus accumbens. J Pharmacol Exp Ther, 276:306-315, 1996.

  44. WOOLVERTON WL, JOHNSON KM: Neurobiology of cocaine abuse. Trends Pharmacol Sci, 13:193-200, 1992.

  45. ZITO KA, VICKERS G, ROBERTS DCS: Disruption of cocaine and heroin self administration following kainic acid lesions of the nucleus accumbens. Pharmacol Biochem Behav, 23:1029-36, 1985.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Salud Mental. 2000;23

ARTíCULOS SIMILARES

CARGANDO ...