2008, Número 3-4
<< Anterior
Microbiología 2008; 50 (3-4)
Celulasas fúngicas: Aspectos biológicos y aplicaciones en la industria energética
Martínez-Anaya C, Balcázar-López E, Dantán-González E, Folch-Mallol JL
Idioma: Español
Referencias bibliográficas: 130
Paginas: 119-131
Archivo PDF: 119.15 Kb.
RESUMEN
La actual demanda de gasolinas para uso automotriz y la creciente escasez de combustibles fósiles han provocado una intensa búsqueda de sustitutos energéticos. El bioetanol de primera generación es un compuesto alterno o complementario a las gasolinas que es producido mediante procesos biológicos a partir de la fermentación de sacarosa o almidón provenientes de la caña de azúcar y el maíz, respectivamente. Por otro lado, la biomasa vegetal como materia prima tiene grandes ventajas sobre estos compuestos, sin embargo, debido a su naturaleza altamente recalcitrante se requieren de enzimas con grandes capacidades degradativas que permitan su uso a niveles industriales. Los hongos producen tanto ligninasas como celulasas capaces de degradar todos los componentes de la madera. En esta revisión se analizan los descubrimientos más recientes de los aspectos biológicos de las celulasas de origen fúngico y sus usos en la industria energética, en el campo de la producción de biocombustibles de segunda generación.
REFERENCIAS (EN ESTE ARTÍCULO)
Alani, F., Anderson, W. & Moo-Young, M. 2008. New isolate of Streptomyces sp. with novel thermoalkalotolerant cellulases. Biotechnol Lett. 30, 123-126.
Ander, P. & Marzullo, L. 1997. Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J Biotechnol. 53, 115-31.
Anderson, W., Dien, B., Brandon, S. & Peterson, J. 2008. Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Appl Biochem Biotechnol. 145, 13-21.
Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., Chou, K. J., Hanai, T. & Liao, J. C. 2007. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. Epub ahead of print, doi:10.1016/j.ymben.2007.08.003.
Aust, S. D. 1995. Mechanisms of degradation by white rot fungi. Environ Health Perspect. 103, 59-61.
Baldrian, P. & Valaskova, V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. Epub ahead of print, doi:10.1111/j.1574-6976.2008.00106.x.
Barr, B. K., Hsieh, Y. L., Ganem, B. & Wilson, D. B. 1996. Identification of two functionally different classes of exocellulases. Biochem. 35, 586-92.
Bayer, E. A., Belaich, J. P., Shoham, Y. & Lamed, R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 58, 521-54.
Béguin, P. & Aubert, J.-P. 1994. The biological degradation of cellulose. FEMS Microbiol Rev. 13, 25-58.
Bidlack, J., Malone, M. & Benson, R. 1992. Molecular structure and component integration of secondary cell walls in plants. Proc Okla Acad Sci. 71, 51-56.
Boer, H., Teeri, T. T. & Koivula, A. 2000. Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng. 69, 486-94.
Cazemier, A. E., Verdoes, J. C., Reubsaet, F. A., Hackstein, J. H., van der Drift, C. & Op den Camp, H. J. 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie Van Leeuwenhoek. 83, 135-48.
Coon, M. J. & Vaz, A. D. 1988. Role of cytochrome P-450 in hydrocarbon formation from xenobiotic and lipid hydroperoxides. Prog Clin Biol Res. 274, 497-507.
Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature. 407, 321-326.
Cowling, E. B. 1975. Physical and chemical constraints in the hydrolysis of cellulose and lignocellulosic materials. Biotechnol Bioeng Symp. 163-81.
Czaja, W. K., Young, D. J., Kawecki, M. & Brown, R. M., Jr. 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 8, 1-12.
Daniel, G., Volc, J., Filonova, L., Plihal, O., Kubatova, E. & Halada, P. 2007. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol. 73, 6241-6253.
Dien, B. S., Hespell, R. B., Wyckoff, H. A. & Bothast, R. J. 1998. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme Microb Technol. 23, 366-371.
Doi, R. H. 2007. Cellulases of mesophilic microorganisms: cellulosome & non-cellulosome producers. Doi 0:14190021.
Druzhinina, I. S., Schmoll, M., Seiboth, B. & Kubicek, C. P. 2006. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol. 72, 2126-2133.
Elberson, M., Malekzadeh, F., Yazdi, M., Kameranpour, N., Noori-Daloii, M., Matte, M., Shahamat, M., Colwell, R. & Sowers, K. 2000. Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol. 50, 993-996.
Eriksson, K.-E. L. 1989. Biotechnology in the pulp and paper industry. Wodd Sci Technol. 24, 79-101.
Esposito, E. & da Silva, M. 1998. Systematics and environmental application of the genus Trichoderma. Crit Rev Microbiol. 24, 89-98.
Eveleigh, D. E. 1987. Cellulase: a perspective. Phil Trans R Soc Lond A. 321, 435-447.
Ewanick, S. M., Bura, R. & Saddler, J. N. 2007. Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng. 98, 737-746.
Ezeji, T. C., Qureshi, N. & Blaschek, H. P. 2007. Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol. 18, 220-7.
Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., Goedegebuur, F., Houfek, T. D., England, G. J., Kelley, A. S. et al. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem. 278, 31988-97.
Fujita, Y., Ito, J., Ueda, M., Fukuda, H. & Kondo, A. 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol. 70, 1207-12.
Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H. & Kondo, A. 2002. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol. 68, 5136-41.
Galbe, M. & Zacchi, G. 2007. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol. 108, 41-65.
Goedegebuur, F., Fowler, T., Phillips, J., van der Kley, P., van Solingen, P., Dankmeyer, L. & Power, S. 2002. Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Current Genetics. 41, 89-98.
Gorka-Niec, W., Bankowska, R., Palamarczyk, G., Krotkiewski, H. & Kruszewska, J. S. 2007. Protein glycosylation in pmt mutants of Saccharomyces cerevisiae. Influence of heterologously expressed cellobiohydrolase II of Trichoderma reesei and elevated levels of GDP-mannose and cis-prenyltransferase activity. Biochim Biophys Acta. 1770, 774-80.
Hartl, L., Kubicek, C. P. & Seiboth, B. 2007. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J Biol Chem. 282, 18654-9.
Henriksson, G., Nutt, A., Henriksson, H., Pettersson, B., Stahlberg, J., Johansson, G. & Pettersson, G. 1999. Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem. 259, 88-95.
Henrissat, B. & Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 293 ( Pt 3), 781-8.
Henrissat, B., Driguez, H., Viet, C. & Schulein, M. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotech. 3, 722-726.
Henrissat, B. & Romeu, A. 1995. Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem J. 311 ( Pt 1), 350-1.
Hilden, L. & Johansson, G. 2004. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett. 26, 1683-93.
Hill, J., Nelson, E., Tilman, D., Polasky, S. & Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Nat Acad Sci USA. 103, 11206-11210.
Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. & Foust, T. D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 315, 804-7.
Hou, Y., Wang, T., Long, H. & Zhu, H. 2007. Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin (Shanghai). 39, 101-7.
Hyde, S. & Wood, P. 1997. A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiol. 143, 259-266.
Ito, J., Fujita, Y., Ueda, M., Fukuda, H. & Kondo, A. 2004. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol Prog. 20, 688-91.
Jeffries, T. W., Grigoriev, I. V., Grimwood, J., Laplaza, J. M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H. et al. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotech. 25, 319-326.
Josefsson, P., Henriksson, G., Wå & gberg, L. 2008. The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases. Biomacromol. 9, 249-254.
Kadla, J. F. & Gilbert, R. D. 2000. Cellulose structure : A review. Cellul Chem Technol. 34, 197-216.
Kalscheuer, R. & Steinbuchel, A. 2003. A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem. 278, 8075-82.
Kalscheuer, R., Stolting, T. & Steinbuchel, A. 2006. Microdiesel: Escherichia coli engineered for fuel production. Microbiol. 152, 2529-36.
Katahira, S., Mizuike, A., Fukuda, H. & Kondo, A. 2006. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol. 72, 1136-43.
Kawai, R., Igarashi, K. & Samejima, M. 2006. Gene cloning and heterologous expression of glycoside hydrolase family 55 beta-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. Biotechnol Lett. 28, 365-71.
Kim, T. H. & Lee, Y. Y. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol. 96, 2007-2013.
Kim, Y., Hendrickson, R., Mosier, N. S., Ladisch, M. R., Bals, B., Balan, V. & Dale, B. E. 2008. Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers’ grains at high-solids loadings. Bioresour Technol. 99, 5206-5215.
Kipper, K., Valjamae, P. & Johansson, G. 2005. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’ kinetics on fluorescent polymeric model substrates. Biochem J. 385, 527-35.
Klinke, H. B., Thomsen, A. B. & Ahring, B. K. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 66, 10-26.
Kuzma, J., Nemecek-Marshall, M., Pollock, W. H. & Fall, R. 1995. Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol. 30, 97-103.
Lawford, H. G. & Rousseau, J. D. 1991. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis. Appl Biochem Biotechnol. 28-29, 221-36.
Laymon, R. A., Adney, W. S., Mohagheghi, A., Himmel, M. E. & Thomas, S. R. 1996. Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli. Appl Biochem Biotechnol. 57-58, 389-97.
Lee, J.-W., Gwak, K.-S., Park, J.-Y., Park, M.-J., Choi, D.-H., Kwon, M. & Choi, I.-G. 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol. 45, 485-491.
Lin, Y. & Tanaka, S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 69, 627-642.
Linder, M. & Teeri, T. T. 1996. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Nat Acad Sci USA. 93, 12251-12255.
Liu, J., Sun, S.-Y. & Wang, T.-H. 2004. Construction of a yeast one-hybrid system with the xylanase2 promoter from Trichoderma reesei to isolate transcriptional activators. Lett Appl Microbiol. 38, 277-282.
Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66, 506-577.
Lynd, L. R., Wyman, C. E. & Gerngross, T. U. 1999. Biocommodity engineering. Biotechnol Prog. 15, 777-793.
Martínez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez, A. & del Río, J. C. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol. 8, 195-204.
Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D., Huang, K., Chapman, J., Helfenbein, K. G., Ramaiya, P., Detter, J. C., Larimer, F. et al. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 22, 695-700.
Masai, E., Katayama, Y. & Fukuda, M. 2007. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 71, 1-15.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. & Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 96, 673-86.
Murashima, K., Kosugi, A. & Doi, R. H. 2003. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J Bacteriol. 185, 1518-24.
Murnen, H. K., Balan, V., Chundawat, S. P. S., Bals, B., daCostaSousa, L. & Dale, B. E. 2007. Optimization of Ammonia Fiber Expansion (AFEX) Pretreatment and Enzymatic Hydrolysis of Miscanthus x giganteus to Fermentable Sugars. Biotechnol Prog. 23, 846-850.
Murray, P. G., Collins, C. M., Grassick, A. & Tuohy, M. G. 2003. Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product. Biochem Biophys Res Commun. 301, 280-6.
Nevalainen, H., Suominen, P. & Taimisto, K. 1994. On the safety of Trichoderma reesei. J Biotechnol. 37, 193-200.
Ng, T. B. 2004. Peptides and proteins from fungi. Peptides. 25, 1055-1073.
Nguyen, Q. A., Tucker, M. P., Keller, F. A. & Eddy, F. P. 2000. Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol. 84-86, 561-76.
Nidetzky, B., Steiner, W., Hayn, M. & Claeyssens, M. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J. 298 Pt 3, 705-10.
Park, C. S., Chang, C. C. & Ryu, D. D. 2000. Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica. Appl Biochem Biotechnol. 87, 1-15.
Park, M. O. 2005. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol. 187, 1426-9.
Penttila, M. E., Andre, L., Lehtovaara, P., Bailey, M., Teeri, T. T. & Knowles, J. K. 1988. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene. 63, 103-12.
Peters, D. 2006. Carbohydrates for fermentation. Biotechnol J. 1, 806-814.
Pettersen, R. C. (1984). The chemical composition of wood. In The chemistry of solid wood Advances in chemistry series, (ed. R. M. Rowell). Washington, D.C.: American Chemical Society.
Plomion, C., Leprovost, G. & Stokes, A. 2001. Wood Formation in Trees. Plant Physiol. 127, 1513-1523.
Puls, J., Schröder, N., Stein, A., Janzon, R. & Saake, B. 2005. Xylans from Oat Spelts and Birch Kraft Pulp. Macromol Symp. 232, 85-92.
Rauscher, R., Wurleitner, E., Wacenovsky, C., Aro, N., Stricker, A. R., Zeilinger, S., Kubicek, C. P., Penttila, M. & Mach, R. L. 2006. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell. 5, 447-56.
Rogers, P., Jeon, Y., Lee, K. & Lawford, H. 2007. Zymomonas mobilis for Fuel Ethanol and Higher Value Products. In Biofuels, pp. 263-288.
Ross, P., Mayer, R. & Benziman, M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Mol Biol Rev. 55, 35-58.
Saha, B. C. 2003. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 30, 279-91.
Saleh, A. A., Watanabe, S., Annaluru, N., Kodaki, T. & Makino, K. 2006. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. Nucleic Acids Symp Ser (Oxf). 279-80.
Sarath, G., Akin, D., Mitchell, R. & Vogel, K. 2008. Cell-wall composition and accessibility to hydrolytic enzymes is differentially altered in divergently bred switchgrass (Panicum virgatum L.) genotypes. Appl Biochem Biotechnol. Epub ahead of print, doi:10.1007/s12010-008-8168-5.
Sasakura, Y., Nakashima, K., Awazu, S., Matsuoka, T., Nakayama, A., Azuma, J.-i. & Satoh, N. 2005. Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Nat Acad Sci USA. 102, 15134-15139.
Schmer, M. R., Vogel, K. P., Mitchell, R. B. & Perrin, R. K. 2008. Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A. 105, 464-469.
Schmid, G. & Wandrey, C. 1987. Purification and partial characterization of a cellodextrin glucohydrolase (b-glucosidase) from Trichoderma reesei strain QM 9414. Biotechnol Bioeng. 30, 571-585.
Schmoll, M., Franchi, L. & Kubicek, C. P. 2005. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell. 4, 1998-2007.
Schmoll, M. & Kubicek, C. P. 2005. ooc1, a unique gene expressed only during growth of Hypocrea jecorina (anamorph: Trichoderma reesei) on cellulose. Curr Genet. 48, 126-33.
Schmoll, M., Zeilinger, S., Mach, R. L. & Kubicek, C. P. 2004. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol. 41, 877-87.
Seiboth, B., Hartl, L., Pail, M., Fekete, E., Karaffa, L. & Kubicek, C. P. 2004. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose. Mol Microbiol. 51, 1015-25.
Seiboth, B., Hartl, L., Salovuori, N., Lanthaler, K., Robson, G. D., Vehmaanpera, J., Penttila, M. E. & Kubicek, C. P. 2005. Role of the bga1-encoded extracellular b-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Appl Environ Microbiol. 71, 851-7.
Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H. & Kondo, A. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol. 70, 5037-40.
Simpson, T. W., Sharpley, A. N., Howarth, R. W., Paerl, H. W. & Mankin, K. R. 2008. The new gold rush: fueling ethanol production while protecting water quality. J Environ Qual. 37, 318-324.
Sprenger, G. A. 1996. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett. 145, 301-307.
Stricker, A. R., Grosstessner-Hain, K., Wurleitner, E. & Mach, R. L. 2006. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell. 5, 2128-37.
Stricker, A. R., Mach, R. L. & de Graaff, L. H. 2008. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol. 78, 211-20.
Sun, Y. & Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 83, 1-11.
Suto, M. & Tomita, F. 2001. Induction and catabolite repression mechanisms of cellulase in fungi. J Bioscience Bioengineering. 92, 305-311.
Suzuki, M. R., Hunt, C. G., Houtman, C. J., Dalebroux, Z. D. & Hammel, K. E. 2006. Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol. 8, 2214-2223.
Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K. & Tanaka, T. 2005. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Bioscience Bioengineering. 100, 637-643.
Teeri, T. T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160-167.
Teunissen, M. J. & Op den Camp, H. J. 1993. Anaerobic fungi and their cellulolytic and xylanolytic enzymes. Antonie Van Leeuwenhoek. 63, 63-76.
Tilman, D., Hill, J. & Lehman, C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 314, 1598-600.
Tollefson, J. 2008. Energy: not your father’s biofuels. Nature. 451, 880-3.
Tomás-Pejó, E., Oliva, J. M., Ballesteros, M. & Olsson, L. 2008. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng. Epub ahead of print, doi:10.1002/bit.21849.
Tsukada, T., Igarashi, K., Yoshida, M. & Samejima, M. 2006. Molecular cloning and characterization of two intracellular b-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 73, 807-14.
Valjamae, P., Sild, V., Pettersson, G. & Johansson, G. 1998. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem. 253, 469-75.
van den Berg, O., Capadona, J. R. & Weder, C. 2007. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromol. 8, 1353-1357.
van Maris, A., Abbott, D., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M., Wisselink, H., Scheffers, W., van Dijken, J. & Pronk, J. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek. 90, 391-418.
von Ossowski, I., Teeri, T., Kalkkinen, N. & Oker-Blom, C. 1997. Expression of a fungal cellobiohydrolase in insect cells. Biochem Biophys Res Commun. 233, 25-9.
Wackett, L. P. 2008a. Biomass to fuels via microbial transformations. Curr Opin Chem Biol. Epub ahead of print, doi:10.1016/j.cbpa.2008.01.025.
Wackett, L. P. 2008b. Microbial-based motor fuels: science and technology. Microb Biotechnol. Epub ahead of print, doi:10.1111/j.1751-7915.2007.00020.x.
Wackett, L. P., Frias, J. A., Seffernick, J. L., Sukovich, D. J. & Cameron, S. M. 2007. Genomic and biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1. Appl Environ Microbiol. 73, 7192-8.
Wamalwa, B. M., Zhao, G., Sakka, M., Shiundu, P. M., Kimura, T. & Sakka, K. 2007. High-level heterologous expression of Bacillus halodurans putative xylanase xyn11a (BH0899) in Kluyveromyces lactis. Biosci Biotechnol Biochem. 71, 688-93.
Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N. et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450, 560-5.
Watanabe, S., Abu Saleh, A., Pack, S. P., Annaluru, N., Kodaki, T. & Makino, K. 2007. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiol. 153, 3044-54.
Wilder, B. M. & Albersheim, P. 1973. The structure of plant cell walls: IV. A structural comparison of the wall hemicellulose of cell suspension cultures of sycamore (Acer pseudoplatanus) and of red kidney bean (Phaseolus vulgaris). Plant Physiol. 51, 889-893.
Wills, C. 1990. Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol. 25, 245 - 280.
Wingren, A., Galbe, M., Roslander, C., Rudolf, A. & Zacchi, G. 2005. Effect of reduction in yeast and enzyme concentrations in a simultaneous-saccharification-and-fermentation-based bioethanol process. Appl Biochem Biotechnol. 122, 485-499.
Withers, S. G. 2001. Mechanisms of glycosyl transferases and hydrolases. Carbohydr Polym. 44, 325-337.
Wong, K. K., Tan, L. U. & Saddler, J. N. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Mol Biol Rev. 52, 305-317.
Wurleitner, E., Pera, L., Wacenovsky, C., Cziferszky, A., Zeilinger, S., Kubicek, C. P. & Mach, R. L. 2003. Transcriptional regulation of xyn2 in Hypocrea jecorina. Eukaryot Cell. 2, 150-8.
Xiao, Z., Gao, P., Qu, Y. & Wang, T. 2001. Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose. Biotechnol Lett. 23, 711-715.
Yao, Q., Sun, T., Chen, G. & Liu, W. 2007. Heterologous expression and site-directed mutagenesis of endoglucanase CelA from Clostridium thermocellum. Biotechnol Lett. 29, 1243-1247.
Zeilinger, S., Schmoll, M., Pail, M., Mach, R. L. & Kubicek, C. P. 2003. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics. 270, 46-55.
Zhang, X., Xu, C. & Wang, H. 2007. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng. 104, 149-51.